Math 412/512 Assignment 6

Due Tuesday, November 29

1) Complete the proof, begun in class, that $C(\mathbb{R})$ is a ring by checking that the distributive property holds.
2) Let G be an abelian group, $|G|>1$. The trivial ring structure on G is given by endowing G with the multiplication

$$
g \cdot T \cdot h=e_{G}
$$

for all $g, h \in G$. By definition, " ${ }^{T}$ " is a binary operation.
a) Check that " $\cdot T$ " is associative and distributes over the group operation of G, which you may write as " + ".

Thus, equipping G with its group operation " + " and the multiplication " $\cdot T$ " makes G into a ring.
b) Is G a commutative ring?
c) Does G have a unity?
3) Let $S=\{f: \mathbb{Z} \rightarrow \mathbb{Z} \mid f$ is bijective $\}$. Define two binary operations, " $+s$ " and " $\cdot S$ " by

1. $\left(f+{ }_{s} g\right)(n)=f(n)+g(n)$
2. $(f \cdot S g)(n)=(f \circ g)(n)$
for all $f, g \in S$ and all $n \in \mathbb{Z}$. Check that, with these two operations, S is NOT a ring.
4) In the following problems, show that the subset is a subring. You may assume, in each example, that the larger set is a ring.
a) $\mathbb{Z}[\sqrt{3}]:=\{x \in \mathbb{R} \mid x=a+b \sqrt{3}, a, b \in \mathbb{Z}\} \subset \mathbb{R}$
b) $T_{3}:=\left\{\left.\left(\begin{array}{ccc}a_{1,1} & a_{1,2} & a_{1,3} \\ 0 & a_{2,2} & a_{2,3} \\ 0 & 0 & a_{3,3}\end{array}\right) \right\rvert\, a_{i, j} \in \mathbb{R} \forall 1 \leq i \leq j \leq 3\right\} \subset M_{3}(\mathbb{R})$.
c) $I_{0}:=\{f \in C(\mathbb{R}) \mid f(0)=0\} \subset C(\mathbb{R})$.
5) (\#36, Chapter 12) Let m and n be positive integers and let k be the least common multiple of m and n. Show that $m \mathbb{Z} \cap n \mathbb{Z}=k \mathbb{Z}$.

Extra Credit Problem

Directions: I will accept no written solutions for even a part of the following problem. They must be proved on a blackboard with me listening to the proof.

1) (group rings) Let G be a finite group and let $\mathbb{C}[G]$ be the space of all functions from G to $\mathbb{C} . \mathbb{C}[G]$ is a finite-dimensional vector space over \mathbb{C} with basis consisting of the functions $\delta_{g}: G \rightarrow \mathbb{C}$,

$$
\delta_{g}(h)=\left\{\begin{array}{ll}
1 & h=g \\
0 & h \neq g
\end{array} .\right.
$$

As such, if $f_{1}, f_{2} \in \mathbb{C}[G]$, there are complex number $\left(\alpha_{k}\right)_{k \in G}$ and $\left(\beta_{h}\right)_{h \in G}$ with

$$
f_{1}=\sum_{k \in G} \alpha_{k} \delta_{k}, f_{2}=\sum_{h \in G} \beta_{h} \delta_{h} .
$$

Note that these are finite sums since G is finite.
Define " $+_{G}$ " and " $\cdot{ }_{G}$ " by

1. $\left(f_{1}+{ }_{G} f_{2}\right)(g)=f_{1}(g)+f_{2}(g)$
2. $\left(f_{1} \cdot{ }_{G} f_{2}\right)(g)=\sum_{k, h \in G} \alpha_{k} \beta_{h} \delta_{k h}(g)$.
a) Show that $\mathbb{C}[G]$, with these operations, is a ring.
b) Prove that if $\sigma=\sum_{g \in G} \delta_{g}$, then for all $f \in \mathbb{C}[G], f \cdot{ }_{G} \sigma=\sigma \cdot{ }_{G} f$.
