Math 412/512 Assignment 7

Due Monday, December 12

1) Recall the definition provided in class of a field with 4 elements: Given ${0, 1, x, y}$, the operations "+" and \cdot were determined by the following tables.

Complete the proof that this is a field by showing distributivity.

2) For a unital ring R, let R^{\times} denote the set of all units.

a) Prove that (R^{\times}, \cdot) is a group, where "^{*}" is the multiplication operation on R.

b) Determine the group isomorphism class of $\mathbb{Z}[x]^\times$.

c) If R and S are unital rings, determine $(R \oplus S)^{\times}$ as a subset of $R \oplus S$.

- 3) Check that the following subrings of the given rings are actually ideals.
	- a) $\{p \in \mathbb{Z}[x] \mid p(0) \in 2\mathbb{Z}\}\$
	- b) $\{n \in \mathbb{Z}_8 \mid n \notin \mathbb{Z}_8^\times\}$
	- c) $\{f \in C_0(\mathbb{R}) \mid f(x) = 0 \forall x \in \mathbb{Q}\}\$
- 4) Check that the following commutative rings are actually fields.

a)
$$
\left\{x \in M_2(\mathbb{R}) \mid x = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \right\}
$$
, inherited operations from $M_2(\mathbb{R})$.

b) $\{a+b\}$ $\sqrt{15}$ | $a, b \in \mathbb{Q}$ }, inherited operations from R.

c)
$$
\{n + im \mid n, m \in \mathbb{Z}_7, i^2 = -1\}
$$
, operations
 $(n + im) \cdot (a + ib) = (an - mb) \text{mod}(7) + i((nb + ma) \text{mod}(7))$

and

.

$$
(n + im) + (a + ib) = (n + a) \text{mod}(7) + i((m + b) \text{mod}(7))
$$

5) Let I be an ideal in the ring R and J be an ideal in the ring S . Prove that $I \oplus J$ is an ideal in $R \oplus S$.

6) (#58, Chapter 13) Let F be a finite field with n elements. Prove that $x^{n-1} = 1_F$ for all nonzero $x \in F$.

7) (#18, Chapter 19) Let $P = \{(a, b, c) | a, b, c \in \mathbb{R}, a = 2b + 3c\}$. Prove that P is a subspace of \mathbb{R}^3 . Find a basis for P.

8) a) Show that $C(\mathbb{R})$ is a vector space over \mathbb{R} .

b) Prove that $C(\mathbb{R})$ is infinite dimensional as a vector space over \mathbb{R} .

9) Establish that $\mathbb{Q}(\sqrt{2})$ 5, $\sqrt{7}$) = Q($\sqrt{5} + \sqrt{7}$).

Extra Credit Problem

Directions: I will accept no written solutions for even a part of the following problem. They must be proved on a blackboard with me listening to the proof.

1) (Grassmannians) For a field F and a vector space V over F , the *Grassmannian* $Gr(k, V)$ is the collection of all k-dimensional linear subspaces of V. The order of $Gr(k, V)$ is the number of distinct k-dimensional linear subspaces of V .

a) Determine, with proof, the number of distinct one-dimensional subspaces of \mathbb{Z}_p^n , i.e., find the order of $Gr(1, \mathbb{Z}_p^n)$.

b) The order of $Gr(k, \mathbb{Z}_p^n)$ for $k \leq n$ is given by the formula $\frac{[n]_p!}{[n-k]_p!}$ $[n - k]_p![k]_p!$ where for $m \in \mathbb{N}$,

$$
[m]_p=\frac{p^m-1}{p-1}
$$

and $[m]_p!$ is defined by

$$
[m]_p! = [m]_p \cdot [m-1]_p \cdots [2]_p \cdot [1]_p.
$$

Compute $\frac{[n]_p!}{[n]_q!}$ $[n-k]_p![k]_p!$ for arbitrary p, n, and k, then take the limit as $p \to 1$. Ruminate on your answer and you may start to get some idea of what people mean by "the field with one element."

c) Actually prove that the order of
$$
Gr(k,\mathbb{Z}_p^n) = \frac{[n]_p!}{[n-k]_p![k]_p!}
$$
 for $1 < k < n$.

2) Provide, with proof, an example of a ring R with no zero divisors where $x^2 = y^2$ does not necessarily imply either $x = y$ or $x = -y$ for $x, y \in R$.