Math 412/512 Assignment 7

Due Monday, December 12

1) Recall the definition provided in class of a field with 4 elements: Given $\{0, 1, x, y\}$, the operations "+" and \cdot were determined by the following tables.

	0	1	x	y		+	0	1	x	
0	0	0	0	0		0	0	1	х	I
1	0	1	X	у		1	1	0	у	Ī
x	0	х	у	1		x	х	у	0	
y	0	у	1	х	ĺ	y	у	х	1	Γ

Complete the proof that this is a field by showing distributivity.

2) For a unital ring R, let R^{\times} denote the set of all units.

a) Prove that (R^{\times}, \cdot) is a group, where "." is the multiplication operation on R.

- b) Determine the group isomorphism class of $\mathbb{Z}[x]^{\times}$.
- c) If R and S are unital rings, determine $(R \oplus S)^{\times}$ as a subset of $R \oplus S$.
- 3) Check that the following subrings of the given rings are actually ideals.
 - a) $\{p \in \mathbb{Z}[x] \mid p(0) \in 2\mathbb{Z}\}$
 - b) $\{n \in \mathbb{Z}_8 \mid n \notin \mathbb{Z}_8^{\times}\}$
 - c) $\{f \in C_0(\mathbb{R}) \mid f(x) = 0 \ \forall \ x \in \mathbb{Q}\}$
- 4) Check that the following commutative rings are actually fields.

a)
$$\left\{ x \in M_2(\mathbb{R}) \mid x = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \right\}$$
, inherited operations from $M_2(\mathbb{R})$

b) $\{a + b\sqrt{15} \mid a, b \in \mathbb{Q}\}$, inherited operations from \mathbb{R} .

c)
$$\{n + im \mid n, m \in \mathbb{Z}_7, i^2 = -1\}$$
, operations
 $(n + im) \cdot (a + ib) = (an - mb) \mod(7) + i((nb + ma) \mod(7))$

and

$$(n+im) + (a+ib) = (n+a) \text{mod}(7) + i((m+b) \text{mod}(7))$$

5) Let *I* be an ideal in the ring *R* and *J* be an ideal in the ring *S*. Prove that $I \oplus J$ is an ideal in $R \oplus S$.

6) (#58, Chapter 13) Let F be a finite field with n elements. Prove that $x^{n-1} = 1_F$ for all nonzero $x \in F$.

7) (#18, Chapter 19) Let $P = \{(a, b, c) \mid a, b, c \in \mathbb{R}, a = 2b + 3c\}$. Prove that P is a subspace of \mathbb{R}^3 . Find a basis for P.

8) a) Show that $C(\mathbb{R})$ is a vector space over \mathbb{R} .

b) Prove that $C(\mathbb{R})$ is infinite dimensional as a vector space over \mathbb{R} .

9) Establish that $\mathbb{Q}(\sqrt{5}, \sqrt{7}) = \mathbb{Q}(\sqrt{5} + \sqrt{7}).$

Extra Credit Problem

Directions: I will accept no written solutions for even a part of the following problem. They must be proved on a blackboard with me listening to the proof.

1) (Grassmannians) For a field F and a vector space V over F, the Grassmannian Gr(k, V) is the collection of all k-dimensional linear subspaces of V. The order of Gr(k, V) is the number of distinct k-dimensional linear subspaces of V.

a) Determine, with proof, the number of distinct one-dimensional subspaces of \mathbb{Z}_p^n , i.e., find the order of $Gr(1, \mathbb{Z}_p^n)$.

b) The order of $Gr(k, \mathbb{Z}_p^n)$ for $k \leq n$ is given by the formula $\frac{[n]_p!}{[n-k]_p![k]_p!}$ where for $m \in \mathbb{N}$,

$$[m]_p = \frac{p^m - 1}{p - 1}$$

and $[m]_p!$ is defined by

$$[m]_p! = [m]_p \cdot [m-1]_p \cdots [2]_p \cdot [1]_p.$$

Compute $\frac{[n]_p!}{[n-k]_p![k]_p!}$ for arbitrary p, n, and k, then take the limit as $p \to 1$. Ruminate on your answer and you may start to get some idea of what people mean by "the field with one element."

c) Actually prove that the order of
$$Gr(k, \mathbb{Z}_p^n) = \frac{[n]_p!}{[n-k]_p![k]_p!}$$
 for $1 < k < n$.

2) Provide, with proof, an example of a ring R with no zero divisors where $x^2 = y^2$ does not necessarily imply either x = y or x = -y for $x, y \in R$.