Math 412/512 Assignment 2

Due Thursday, October 1

1) Prove that there are infinitely many prime numbers.
2) $(\# 12$, Chapter 2) Show that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{lcm}(a, b)=a b$. In general, show that

$$
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}
$$

3) ($\# 9$, Chapter 3) Prove that multiplication on \mathbb{Z}_{m} as defined in the text is well-defined.
4) Enumerate $\mathbb{Z}_{m}=\left\{[0]_{m},[1]_{m},[2]_{m},[3]_{m}, \ldots,[m-1]_{m}\right\}$.
a) Prove that the product of all nonzero elements in \mathbb{Z}_{m} is equal to $[0]_{m}$ if and only if m is composite UNLESS m is equal to 4 !
b) Prove that if n is relatively prime to m, then $\exists s \in \mathbb{N},[n]_{m}[s]_{m}=[1]_{m}$.
c) If p is prime, prove that the product of all squares of nonzero elements in \mathbb{Z}_{p} is equal to 1 .
d) (Extra Credit) If p is prime, show that the product of all nonzero elements in \mathbb{Z}_{p} is equal to $[p-1]_{p}$. I will not accept written solutions; you must present your solution to me in my office on the board.
5) (\#5, Chapter 4) Let n be an odd integer and consider the polynomial

$$
\Phi_{n+1}=\frac{x^{n+1}-1}{x-1}=x^{n}+x^{n-1}+\cdots+x+1
$$

Use the Root Theorem 4.3 to argue that Φ_{n+1} has a linear factor. We call Φ_{n+1} a cyclotomic polynomial.
6) We've seen some similarities between \mathbb{Z} and $\mathbb{Q}[x]$. Now, let's explore some differences.
a) By successively adding one to itself, we obtain all of \mathbb{N}. Taking all additive inverses, we have all of \mathbb{Z} except zero. Show that there is no polynomial $p(x)$ such that adding $p(x)$ to itself and taking additve inverses gives all of $\mathbb{Q}[x]$ except zero.
b) ($\# 13$, Chapter 4) We say that $p(x) \in \mathbb{Q}[x]$ has a multiplicative inverse if there exists $q(x) \in \mathbb{Q}[x], p(x) q(x)=1$. In \mathbb{Z}, there are only two numbers with multiplicative inverses. Prove that there are infinitely many elements in $\mathbb{Q}[x]$ with multiplicative inverses, and these are precisely the constant functions.

