Math 412/512 Assignment 3

Due Thursday, October 15

1) (\#15, Chapter 5) a) Apply Eisenstein's Criterion to check that the following polynomials are irreducible:

$$
5 x^{3}-6 x^{2}+2 x-14 \text { and } 4 x^{5}+5 x^{3}-15 x+20
$$

b) Prove that if $f(x) \in \mathbb{Z}[x]$, then $f(x)$ is irreducible if and only if $f(y+m)$ is.
2) (\#16, Chapter 5) Let p be a positive prime and let

$$
\Phi_{p}[x]=\frac{x^{p}-1}{x-1} .
$$

Prove that $\Phi_{p}[x]$ is irreducible over $\mathbb{Z}[x]$, using Eisenstein's Criterion and part b) of 1) with $m=1$.
3) In $M_{2}(\mathbb{C})$, let

$$
\begin{gathered}
I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
\mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathbf{k}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
\end{gathered}
$$

Verify that $\mathbf{i j}=\mathbf{k}, \mathbf{j} \mathbf{k}=\mathbf{i}, \mathbf{k i}=\mathbf{j}$, and $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-I$.
4) (\#18, Chapter 6) With the notation $a^{2}=a \cdot a$, suppose that $a^{2}=a$ for every element a in a ring R. (Elements a in a ring R where $a^{2}=a$ are called idempotent.)
a) Show that $a=-a$.
b) Now show that R is commutative.
5) In the following problems, determine whether the indicated subset is a subring. You may assume, in each example, that the larger set is a ring.
a) $\mathbb{Z}[\sqrt{5}]:=\{x \in \mathbb{R} \mid x=a+b \sqrt{5}, a, b \in \mathbb{Z}\} \subset \mathbb{R}$
b) $N_{3}:=\left\{T \in M_{3}(\mathbb{R}) \mid \exists 0 \neq S \in M_{3}(\mathbb{R}), S T=0\right\} \subset M_{3}(\mathbb{R})$.
c) Referring to Problem 3) above,

$$
\mathbb{H}=\{a I+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, \text { and } d \in \mathbb{R}\} \subset \mathrm{M}_{2}(\mathbb{C})
$$

6) (\#20, Chapter 7) Suppose that R is a set with two operations + and \circ, which satisfy the rules defining a ring, except we do not assume that addition is commutative. Suppose that R also has a multiplicative identity 1. Then prove that addition in R must in fact be commutative, and so R is a ring under these operations.
7) (\#19, Chapter 8) Suppose that

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R})
$$

is a nonzero element which is not a unit. Show that A is actually a zero divisor. (You might want to look at Exercise $\# 2$ in Chapter 8). This is in stark contrast to \mathbb{Z}, where the only units are ± 1 and there are NO zero divisors!

Extra Credit: You may have seen in advanced calculus that \mathbb{R} and \mathbb{C} have the same cardinality. Prove that \mathbb{R} and \mathbb{C} are not isomorphic as rings. I will accept no written solution, you must present your solution to me on the board in my office.

