Math 412/512 Assignment 4

Due Thursday, October 22

1) Recall that $C_{0}(\mathbb{R})$ is the ring of all continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\lim _{|x| \rightarrow \infty} f(x)=0$. Fix a real number x and define

$$
I_{x}=\left\{f \in C_{0}(\mathbb{R}) \mid f(x)=0\right\}
$$

a) Show that, for any choice of x, I_{x} is an ideal in $C_{0}(\mathbb{R})$.
b) Is I_{x} a principal ideal? Prove or disprove.
2) (\# 25, Chapter 9) Suppose that R is a commutative ring with unity, and I is an ideal. Let

$$
A(I)=\{s \in R: r s=0 \forall r \in I\}
$$

we call $A(I)$ the annihilator of I. Prove that $A(I)$ is an ideal.
3) (\#'s 12 and 14, Chapter 10) In this exercise, we describe the cubic formula for factoring an arbitrary polynomial of degree 3 in $\mathbb{R}[x]$. This version of the formua is called the Cardano-Tartaglia formula after two 16th-century Italian mathematicians involved in its discovery. Consider the polynomial $f=x^{3}+a x^{2}+b x+c \in \mathbb{R}[x]$ (by dividing by the lead coefficient, if necessary, we have assumed without loss of generality that it is 1).
a) Show that the change of variables $x=y-\frac{1}{3} a$ changes f into a cubic polynomial that lacks a square term; that is, a polynomial of the form $g=$ $f\left(y-\frac{1}{3} a\right)=y^{3}+p y+q=0$.
b) Find explicit solutions u, v to the pair of simultaneous equations

$$
\begin{gathered}
v^{3}-u^{3}=q \\
u v=\frac{1}{3} p .
\end{gathered}
$$

Hint: These equations reduce to a quadratic equation in u^{3} or v^{3}.
c) Prove that the identity

$$
(u-v)^{3}+3 u v(u-v)+\left(v^{3}-u^{3}\right)=0
$$

and use it to show that $y=u-v$ is a solution to the cubic equation $y^{3}+$ $p y+q=0$.
d) Let $D=q^{2}+\frac{4 p^{3}}{27}$. (This is called the disciminant of the conic.) Conclude that

$$
y=\sqrt[3]{\frac{-q+\sqrt{D}}{2}}-\sqrt[3]{\frac{q+\sqrt{D}}{2}}
$$

is a root for $g=0$.
e) Use the formula to factor $p(x)=x^{3}-6 x-9$.
4) (\# 26, Chapter 11) \# Show that the rings

$$
\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \text { and } \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

are all non-isomorphic, even though each of these rings has the same number of elements.
5) (\# 11, Chapter 12) Consider the projective homomorphism $\pi_{1}: R \times S \rightarrow R$ given by

$$
\pi_{1}((r, s))=r
$$

for all $r \in R, s \in S$. What is the kernel of π_{1} ? When do two elements of $R \times S$ get mapped to the same element of R ? The set of pre-images of π_{1} is naturally in one-to-one correspondence with what ring? Answer all of these questions with proof.

Extra Credit: Prove that $M_{n}(\mathbb{R})$ is simple. I will accept no written solutions; you must present your solution to me on the board in my office. You may receive some credit by demonstrating this fact for $M_{3}(\mathbb{R})$.

