Math 412/512 Assignment 5

Due Thursday, November 19

1) (\#5, Chapter 39) Let V be a vector space over the field \mathbb{F}. Suppose that $0 \neq r \in \mathbb{F}$. Define the function

$$
\phi_{r}: V \rightarrow V
$$

by $\phi_{r}(v)=r v$. Prove that ϕ_{r} is a bijection that preserves addition.
2) (\#4, Chapter 41) Suppose that $\alpha \in \mathbb{C}$ is an algebraic number over \mathbb{Q} and $r \in \mathbb{Q}$. Prove that $r \alpha$ and $\alpha+r$ are also algebraic over \mathbb{Q}.

Extra Credit: If

$$
\mathbb{A}=\{\alpha \in \mathbb{C} \mid \alpha \text { is algebraic over } \mathbb{Q}\}
$$

conclude that \mathbb{A} is a field. No written solutions accepted, you must give your proof on the board in my office.
3) Give an example, with proof, of a noncommutative unital ring R and a maximal ideal I in R where R / I is not a field. You may use the fact that $M_{n}(\mathbb{R})$ is simple.
4) (\#2, Chapter 42) Consider the polynomial

$$
f(x)=1+x^{2}+x^{3} \in \mathbb{Z}_{2}(\alpha)[x]
$$

where α is a root of $p(x)=x^{2}+x+1 \in \mathbb{Z}_{2}[x]$ over some extension field E. Recall that $\mathbb{Z}_{2}(\alpha)$ is a field with four elements.
a) Use the Root Theorem to show that $f(x)$ is irreducible.
b) By Kronecker's Theorem we can construct an extension field of $\mathbb{Z}_{2}(\alpha)$ so that $f(x)$ has a root β. How many elements does this field have? Be sure to prove your assertion!
5) Let $n, m \in \mathbb{N}$ and suppose $n \neq m$.
a) Find polynomials $p, q, r \in \mathbb{Z}[x]$ such that $p(\sqrt{5}+\sqrt{7})=q(\sqrt{5})=$ $r(\sqrt{7})=0$. Hint: you'll need at least degree 4 for p.
b) Prove that $\mathbb{Q}[\sqrt{n}, \sqrt{m}]=\mathbb{Q}[\sqrt{n}+\sqrt{m}]$.
c) Compute the degree of $\mathbb{Q}[\sqrt{5}, \sqrt{7}]$, with a proof that your answer is correct.
d) Show that $\mathbb{Q}[\sqrt{7}]$ and $\mathbb{Q}[\sqrt{5}]$ are not isomorphic as fields. Hint: Prove that any isomorphism is the identity on \mathbb{Q} and argue by contradiction.

