Math 412/512 Final B

DIRECTIONS: If you choose this final, your grade in the course can be no higher than a B.

1) a) (5 points) State the definition of a group G.
b) (4 points) Define the order of a group G.
c) (4 points) Give the definition of an isomorphism between two groups G and H.
d) (5 points) Provide an example of two groups with finite order that are not isomorphic.
2) a) (5 points) State the 1-step subgroup test for determining whether a subset H of G is a subgroup of G.
b) (5 points) Define a normal subgroup of a group G. Any equivalent condition is acceptable.
c) (15 points) Show that if $H=\left\{T \in G L_{2}(\mathbb{R}) \mid \operatorname{det}(T) \in \mathbb{Q}\right\}$, then H is normal in $G L_{2}(\mathbb{R})$. NOTE: you should prove both that H is a subgroup and that H is normal.
3) a) (5 points) Define the index for a subgroup H of a group G.
b) (5 points) State Lagrange's Theorem
c) (5 points) Provide an example of a finite index inclusion $H \leq G$ where the order of G is infinite.
4) Define the following groups used in this course and give the group operation.
a) (4 points) \mathbb{Z}
b) (4 points) $G L_{n}(\mathbb{R}), n \in \mathbb{N}$.
c) (4 points) $S_{n}, n \in \mathbb{N}, n \geq 2$.
d) (4 points) $D_{n}, n \in \mathbb{N}, n \geq 3$
5) a) (5 points) Give the definition of a ring.
b) (3 points) State what it means for a ring to be commutative.
c) (3 points) State what it means for a ring to have a unity.
d) (5 points) Give an example of an infinite, non-commutative ring with unity.
6) a) (5 points) State the subring test for a subset S of a ring R.
b) (4 points) Define an ideal I of a ring R.
c) (15 points) Let $R=\mathbb{Z} \oplus \mathbb{Z}$ and $I=\{(3 n, 5 m) \mid n, m \in \mathbb{Z}\}$. Show I is an ideal of R.
7) a) (4 points) For a ring R, define what it means for $x \in R$ to be a unit.
b) (5 points) Define what it means for a ring R to be a field.
c) (4 points) Provide an example of a field.
8) a) (5 points) State the subspace test for a subset W of a vector space V.
b) (4 points) Define a basis for a vector space V.
c) (14 points) Prove that the following subset of \mathbb{R}^{3} is a subspace and find a basis.

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 z+7 y+11 x=0\right\} .
$$

