Math 412/512 Midterm

IN-CLASS PORTION

1) a) (5 points) Let G be a set with a binary operation "*". Under what conditions is $\langle G, *\rangle$ a group? i.e., Give the definition of a group.
b) (4 points) Give an example of an infinite, nonabelian group.
c) (4 points) Give an example of a finite, abelian group.
2) Suppose G is a group and $H \subset G$.
a) (5 points) What conditions must H satisfy to be a subgroup of G ? You may either give the definition of a subgroup or a test which determines H is a subgroup.
b) (4 points) If $G=\mathbb{R} \backslash\{0\}$ with the operation of multiplication, exhibit a nontrivial (i.e. neither G nor $\left\{e_{G}\right\}$) subgroup of G.
3) a) (5 points) For $n \in \mathbb{N}$, define the symmetric group S_{n}.
b) (4 points) For an element $\sigma \in S_{n}$, define what it means for σ to be even.
c) (3 points) Give an example of an even permutation in S_{4}.
d) (5 points) State Cayley's Theorem for a finite group G.
4) Let $\langle G, *\rangle$ and $\langle H, \cdot\rangle$ be groups.
a) (4 points) Give the definition of a homomorphism from $\langle G, *\rangle$ to $\langle H, \cdot\rangle$.
b) (3 points) What additional condition(s) must a homomorphism satisfy in order to be an isomorphism of groups?
c) (4 points) Define the order of a group.
d) (5 points) Provide an example of two groups with the same order that are not isomorphic.
5) Let $H \leq G$.
a) (5 points) Define the left cosets of H in G.
b) (5 points) State Lagrange's Theorem for a finite group G.
c) (5 points) Define what it means for H to be a normal subgroup of G.
d) (5 points) Give an example of a nontrivial (i.e., neither S_{4} nor the identity element) normal subgroup of S_{4}.
6) A baby proof.

Due Friday, March 11

General rules: 5 questions, 3 concrete, 2 abstract

1) Recall from class that

$$
U(n)=\left\{x \in \mathbb{Z}_{n}: \text { there exists } y \in \mathbb{Z}_{n} \text { with } x y \equiv 1(\text { modulo } \mathrm{n})\right\}
$$

We know that $|U(n)|=\phi(n)$.
a) Calculate $|U(15)|$.
b) Show that $U(15)$ is not cyclic. Warning: quoting any general theorem from which this result follows as a trivial consequence will necessitate that you also provide a proof of said theorem.
2) Let G be a group, $H \leq G$, and suppose $[G: H]=2$. Prove that $H \triangleleft G$.
3) Recall that S_{n} denotes the group of all bijections on a set with n elements, with the operation of function composition. Prove that for all natural numbers n and m, S_{n+m} has a subgroup isomorphic to $S_{n} \times S_{m}$.
4) The notation $M_{2}(\mathbb{R})$ refers to the group of all 2×2 matrices with real entries, the group operation being matrix addition. Let

$$
\mathcal{S}=\left\{T \in M_{2}(\mathbb{R}): T=T^{t}\right\}
$$

where if $T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $T^{t}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$. Is \mathcal{S} a subgroup of $M_{2}(\mathbb{R})$? Prove your assertion.
5) Let G and H be groups and suppose $\phi: G \rightarrow H$ is a map satisfying $\phi\left(e_{G}\right)=e_{H}$ and $\phi\left(g^{-1}\right)=\phi(g)^{-1}$ for all $g \in G$. Does it then follow that ϕ is a homomorphism? Prove or give a counterexample.

