Math 412/512 Final

Directions: The odd numbered problems are definitions and theorems meant to aid you in the subsequent even-numbered problem, with the possible exception of 5 b). Use them wisely.

1) a) Define what it means for a subgroup H of a group G to be normal.
b) State Lagrange's Theorem for a finite group.
2) a) Let G be a group and let $H \leq G, K \leq H$. Suppose $[G: K]<\infty$. Prove that $[G: K]=[G: H] \cdot[H: K]$.
b) Let G be a group and suppose $[G: H]<\infty$. Show that $H \triangleleft G$ if and only if $g H^{-1} \subseteq H$ for all $g \in G$.
3) a) Let R be a ring. Define what it means for $I \subseteq R$ to be an ideal of R.
b) Give the definition of a field.
4) a) Provide an example, without proof, of a noncommutative ring with identity R that contains no proper, nontrivial ideals.
b) Let R be any commutative ring with identity and suppose R contains no proper, nontrivial ideals. Prove that R must be a field.
5) a) Define the symmetric group $S_{n}(n \geq 2)$ and the group $D_{n}(n \geq 3)$.
b) State the First Isomorphism Theorem for groups.
6) a) Prove that $S_{3} \times D_{4}$ is not isomorphic to S_{4}.
b) Show that $S_{3} \times Z_{4}$ is not isomorphic to S_{4}.
7) a) State the Fundamental Theorem of Field Theory.
b) Let F be a field and let $p \in F[x]$. Define the splitting field of p.
8) Do ONE of the following two problems.
a) Let $R=\mathbb{Z} \times \mathbb{Z}$. Describe all maximal ideals in R and determine all ring homomorphisms from R to \mathbb{Z}.
-OR-
b) Consider $p(x)=x^{4}+x^{2}+1 \in \mathbb{Q}[x]$. Find the splitting field of p.
