Math 412/512 Final

DIRECTIONS: The odd-numbered problems are definitions and theorems meant to aid you in the subsequent even-numbered problem. Use them wisely.

1) Let R be a ring.
a) Give the subring test for a subset S of R.
b) State the Ring Isomorphism Theorem.
2) Let $R=M_{2}(\mathbb{Z})$ Let

$$
S=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a, b, c, d \in 2 \mathbb{Z}\right\} .
$$

a) Prove that S is a subring of R.
b) What is also true, but that you do not have to prove, is that S is an ideal in R. Identify R / S isomorphically with $M_{2}\left(\mathbb{Z}_{2}\right)$; be sure to prove that your map is, indeed, an isomorphism.
3) Let \mathbb{F} be a field.
a) Define what it means for $p(x) \in \mathbb{F}[x]$ to be irreducible.
b) State Kronecker's Theorem.
4) Let $p(x)=x^{5}+12 x^{3}-18 x^{2}+9 x+3$.
a) Prove that $p(x)$ is irreducible over \mathbb{Q}.
b) Let $\alpha \in \mathbb{C}$ be a root of $p(x)$. Find a basis for $\mathbb{Q}(\alpha)$ and compute the degree of the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$.
5) a) Let R be a ring with unity. Define R^{\times}, the group of units of R.
b) Let G be a group. Define the order of an element $g \in G$.
6) a) Let $G=\mathbb{Z}_{8}^{\times}$with the operation of multiplication modulo 8. Prove that G is not cyclic.
b) Let $\phi: G \rightarrow H$ be a surjective group homomorphism and suppose that $\operatorname{ord}(g)=\operatorname{ord}(\phi(g))$ for all $g \in G$. Prove that ϕ is an isomorphism.
7) a) Define a maximal ideal of a ring R.
b) Define a principal ideal domain.
8) Do ONE of the following two questions. If you do both, I will grade the one you do WORSE on.
a) Construct a field \mathbb{F} with 9 elements. NOTE: \mathbb{Z}_{9} is NOT a field! -OR-
b) Let R be an integral domain and let $a \in R$ be a nonzero, noninvertible element of R. Prove that $\langle a, x\rangle \subset R[x]$ is not a principal ideal domain.

