Math 412/512 Final

DIRECTIONS: The odd-numbered problems are definitions and theorems meant to aid you in the subsequent even-numbered problem. Use them wisely.

- 1) Let R be a ring.
 - a) Give the subring test for a subset S of R.
 - b) State the Ring Isomorphism Theorem.

2) Let $R = M_2(\mathbb{Z})$ Let

$$S = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mid a, b, c, d \in 2\mathbb{Z} \right\}.$$

a) Prove that S is a subring of R.

b) What is also true, but that you do not have to prove, is that S is an ideal in R. Identify R/S isomorphically with $M_2(\mathbb{Z}_2)$; be sure to prove that your map is, indeed, an isomorphism.

- 3) Let \mathbb{F} be a field.
 - a) Define what it means for $p(x) \in \mathbb{F}[x]$ to be irreducible.
 - b) State Kronecker's Theorem.

4) Let $p(x) = x^5 + 12x^3 - 18x^2 + 9x + 3$.

a) Prove that p(x) is irreducible over \mathbb{Q} .

b) Let $\alpha \in \mathbb{C}$ be a root of p(x). Find a basis for $\mathbb{Q}(\alpha)$ and compute the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$.

- 5) a) Let R be a ring with unity. Define R^{\times} , the group of units of R.
 - b) Let G be a group. Define the order of an element $g \in G$.

6) a) Let $G = \mathbb{Z}_8^{\times}$ with the operation of multiplication modulo 8. Prove that G is not cyclic.

b) Let $\phi: G \to H$ be a surjective group homomorphism and suppose that $\operatorname{ord}(g) = \operatorname{ord}(\phi(g))$ for all $g \in G$. Prove that ϕ is an isomorphism.

- **7)** a) Define a maximal ideal of a ring R.
 - b) Define a principal ideal domain.

8) Do ONE of the following two questions. If you do both, I will grade the one you do WORSE on.

a) Construct a field $\mathbb F$ with 9 elements. NOTE: $\mathbb Z_9$ is NOT a field!

-OR-

b) Let R be an integral domain and let $a \in R$ be a nonzero, noninvertible element of R. Prove that $\langle a, x \rangle \subset R[x]$ is not a principal ideal domain.