
Notes on Abstract Algebra and Logic: Towards
their Application to Cell Biology and Security

∗Paolo DINI and †Daniel SCHRECKLING
∗Department of Media and Communications, London School of Economics and Political Science,

London, United Kingdom, e-mail: p.dini@lse.ac.uk,
†Security in Distributed Systems, University of Hamburg, Hamburg, Germany,

e-mail: schreckling@informatik.uni-hamburg.de

Abstract— This paper begins to chart and critically analyse
the formal connections between algebra, logic, and cell biology
on the one hand, and algebra, logic, and software security on
the other. Much of the discussion is necessarily conceptual.
Where the discussion is more formal the current distance
between these disciplines appears evident. The paper focuses
on the algebra of network coding, reviews the main types
of algebraic and temporal logics that underpin security, and
briefly discusses recent work in the application of algebra and
logic to the DNA code.

Index Terms— cell biology, abstract algebra, algebraic logic, net-
work coding, software security

I. INTRODUCTION

In this article we wish to begin to discuss some ideas
related to the connections between cell biology and software
security. The bridge that we are in the process of building
between these two very different fields relies on abstract
algebra and logic and can be simplistically depicted as fol-
lows: biology → algebra → logic → security. In this context
security represents one of the possible applications of a
formalism that we expect to be of wider relevance. When
referring to biologically inspired computing, reliance on
some kind of evolutionary framework tends to be assumed
by default. Whereas biological evolution does represent an
essential model for biologically inspired computing, in this
paper we are focussing on the ‘other’ function of DNA.
By this we mean all the processes relating to the life
of the individual organism, thus a better name could be
‘development’, or ‘morphogenesis’, or ‘gene expression’.
As Stuart Kauffman says,

Darwin’s answer to the sources of the order we see
all around us is overwhelmingly an appeal to a single
singular force: natural selection. It is this single-force
view which I believe to be inadequate, for it fails to
notice, fails to stress, fails to incorporate the possi-
bility that simple and complex systems exhibit order
spontaneously. [1]
If evolution is the model that is able to explain phylogeny

(a succession of organic forms sequentially generated by
reproductive relationships), in this paper we are addressing
the construction of a model that may eventually be relevant
to ontogeny (the history of structural changes in a particular
living being) [2]. Before we can begin to understand and
model morphogenesis, however, we need to understand gene
expression, on which morphogenesis depends. The biology
part of this paper is therefore focussed entirely on the cell.

Our objective is in fact to develop a model inspired by
cell metabolic processes that can represent equally well
biological and computing processes. The motivation for
studying gene expression over evolution is that, even though
it too is the result of an evolutionary process, it is a much
faster and more powerful process of self-organisation that
does not rely at all on genetic operators, but on rather
different mechanisms.

As discussed in Section IV and in [2-5], although we
can make the mapping from cell metabolic cycles to digital
algorithms seem plausible, we still face the problem of
the absence of physical interaction forces between digital
entities, and of the concept of temperature. In other words,
we cannot rely on the minimisation of free energy as the
driver of software systems. More importantly, the interaction
forces bring with them a built-in regularity that is a direct
consequence of the regularity and universality of physical
laws and that, it seems plausible to conclude, gives rise
to the observed regularities in structure and behaviour of
biological systems. Our research is based on the assumption
that the regularities that result from the interplay between
physical law and the spatio-geometrical characteristics of
matter can be formalised through the mathematical theory
of groups, rings, and fields, which is a branch of abstract
algebra. Parallel work by [3] supports this perspective and
is in fact ahead of our results. If we then identify the flow
of energy with a flow of information we do not really need
to worry about the lack of interaction forces. The behaviour
of the users of the software and communication system will
provide a constant flow of information which, in our view,
can be constrained by algebraic transformation and inter-
action rules to produce ordered structures and behaviour.
In reference to Fig. 1, we can therefore see why there is
an arrow between algebra and cell biology. The importance
and effectiveness of abstract algebra, symmetries, fields, and
groups is demonstrated well by network coding techniques,
which will therefore be discussed in this paper as a useful
example of the theory.

The arrow from cell biology to Interaction Computing is
more difficult to explain, partly because the concept of inter-
action computing is still being formed [4] [5]. In order for
the scenario described above to function, the digital system
needs to become reactive to the inputs and the behaviour
of the users. In other words, there cannot be computation
without interaction. Iterating this concept recursively to
components that are farther removed from the user interface,
they too cannot change their states without being ‘pushed’

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

83



Galois

Fields

Boolean

Algebra

Cylindric

Algebra

Temporal

Logic

Propositional

Logic

1st

Order Logic

Strong connection

No current connection,

to be built

Legend

Arrows indicate workflow,

relevance, or information flow: 

models, structures, and algorithms

are assumed to flow from the base

to the head of each arrow

Security

Interaction

Computing

Cell

Biology

Weak connection

Fig. 1. Disciplinary connections of relevance to bio-inspired security

by the components that precede them. The picture that
emerges can therefore be characterised conceptually as a
set of coupled and interacting finite state machines whose
state spaces are subdivided into permissible regions bounded
by surfaces defined by algebraic structure laws. Each state
machine is performing a piece of the algorithm. This is thus
what we mean by interaction computing for the execution of
a distributed algorithm that is partly resident in the ‘DNA’
of the digital system and partly in the environment.

Since Boole published his short book on the mathematics
of logic in 1847 [6], algebra and logic have been closely
connected. The algebraisation of logic has been one of the
success stories of the 20th Century [7] [8] [9]. Therefore,
we do not expect to say anything fundamentally new in
this regard, in this paper. However, if we take the interface
between algebra and logic to be the ‘centre of gravity’
of this article, we are interested in shedding some light
in two different directions. On the one hand, in Section
III we will review the mapping of propositional logic to
Boolean algebra, briefly explain the algebraisation of First-
Order Logic, and finally show the link between First-
Order and Temporal Logic, which is widely used in the
security domain to support applications that are able to
describe, detect, and prevent specific security features or
breaches, respectively. On the other hand, after reviewing
the fundamentals of abstract algebra, touching on coding
and Galois theory, in Section IV we will discuss briefly how
physical and evolutionary forces have induced an algebraic
structure on the DNA code. We see this as the first step in
the charting of a possible path from order construction in
biology to autonomic security algorithms and data structures
that weaves its way through algebra and logic.

II. ABSTRACT ALGEBRA

Abstract algebra deals with the operations between the
elements of a set, with the mappings between different sets,
and with mappings defined from a set to itself. The elements
of a set can be anything at all, including other sets. They can
be integers, polynomials, functions, ‘variables’, and so forth.
They can also be the constitutive elements of logic, which
provides one of the fundamental motivations for the line of
investigation pursued in this paper. Finally, we are making
an explicit assignment of some yet unspecified elements of

the cell as elements of a set. The temptation is to treat the
cell itself as a set. Although this is not necessarily wrong,
we are starting with much simpler sets such as, for example,
treating the four bases of the DNA as the elements of a
set that we can call the alphabet of DNA. The rest of this
section relies on [10], where the basics of abstract algebra
are reviewed and summarised in support of this discussion.

A. Applications to Network Coding

Our purpose is not to summarise results that have been
known for 40 years or more in order to apply them in the
manner originally intended. For that, we need only provide
bibliographical references. The point of developing all this
algebra, from the point of view of our research in bio-
inspired computing, is not functionalist (i.e. to improve
performance); it is to understand the algebraic structure
itself and then see what this structure has in common with
logic on the one hand and with the DNA on the other, as
will be discussed in subsequent sections of this paper. There
is of course an expectation that the biological insights will
ultimately bring a number of advantages, including better
performance, but the first objective is to develop a common
formalism for these very different domains. To this end,
network coding is a very useful ‘case study’ because it
provides a very practical context against which the abstract
concepts discussed in [10] will hopefully become easier
to understand. The following discussion relies on [11] and
[12], and to a smaller extent on [13].

We need to introduce some basic terminology of lin-
ear block codes, upon which we will build a powerful
algebraic structure by progressively introducing additional
constraints. We start with the notion of a vector space. Put
simply (even if perhaps too simplistically), a vector space
is a field in more than one dimension. Each element of a
vector space of dimension n is a tuple of n objects, with
each object an element of a field F . An n-dimensional
vector space over F is denoted by Fn. If F is the binary
field Z2, Fn has exactly 2n elements. Linear block codes
operate by adding redundancy to a message in order to allow
the original message to be reconstructed in the presence of
transmission errors. Given a signal stream, we break it up
into an unspecified number of message blocks of length k,
taken from F k. Thus, the message space is a vector space
of dimension k and exactly 2k elements (message blocks).
To make the code unambiguous and invertible back to the
original message, the mapping between the message space
and the code space must be 1-1 and invertible. Therefore,
the code space is a k-dimensional sub-space of Fn and
also contains 2k different elements, although each is of
length n > k. The positive consequence of setting things
up in this manner is that the encoding map becomes a
linear transformation (i.e. a matrix multiplication) ([12],
239). Thus, we multiply each message block (row vector)
by a matrix of dimensions (k× n) (k rows by n columns).
The result of this multiplication for each block is a code
vector of length n, called a codeword. Each codeword is sent
wirelessly by the transmitter and received by the receiver,
possibly with some errors. The receiver must detect these
errors, correct them, and then map each codeword back to
the original message block to reconstruct the original signal.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

84



We now start connecting to abstract algebra by noticing
that in network coding applications the focus of attention is
not a polynomial whose roots we need to find through the
generation of a field extension as a factor ring (Galois’s orig-
inal problem) but, rather, the factor ring itself. Furthermore,
the generation of a field extension is a necessary step in
finding the roots of an irreducible polynomial. As it happens
a polynomial does not need to be irreducible to form an
ideal, and therefore it does not need to be irreducible to form
a factor ring. An additional point that should help connect
the work in [10] to this discussion is that the concept of
ideal can be applied, in a sense, recursively. In other words,
a factor ring is obtained by ‘dividing’ a ring GF (2)[x] by
an ideal, say [(xn − 1)]. The resulting factor ring can also
contain ideals. It is these latter ideals that we are mainly
going to use. More precisely, in the discussion of cyclic
codes that follows we identify the vector space Fn with the
factor ring, and the code space with one of its ideals.

A cyclic code is a linear block code with the characteristic
that every cyclic shift of any of its codewords yields another
codeword. A cyclic shift is the n-tuple obtained by shifting
every component to the right (or left) and wrapping the
last component back to the front of the list. When working
with cyclic codes, it is useful to associate each codeword of
length n with a polynomial of degree n− 1 or less, whose
coefficients are the coordinates of the code vector:

c(x) = c0 + c1x + c2x
2 + ... + cn−1x

n−1.

c(x) ∈ F [x] is called the code polynomial. The set of k
code polynomials of a code C is a subset of the factor ring
GF (2)[x]/[(xn − 1)], which is not a field since (xn − 1)
is factorisable. Incidentally, from this fact we deduce that
whereas every finite field contains a number of elements
that is equal to an integer power of a prime number,
the converse is not true: a set that contains a number of
elements that is equal to an integer power of a prime
number is not necessarily a field. To clarify, the factor ring
GF (2)[x]/[(xn− 1)] is not a field because not everyone of
its elements has an inverse (due to the fact that the GCD of
each element and (xn − 1) is not necessarily 1). From this
point of view the factor ring is a one-dimensional object. But
the same object can also be described as a ‘vector field’ of
dimension n, Fn. From this second point of view the use
of the term ‘field’ refers to the fact that the ground field
0, 1 is indeed a field. We notice that in this factor ring, by
construction, operations between its elements are performed
modulo (xn − 1). The reason for creating the factor ring
using (xn−1), rather than an irreducible polynomial of the
same degree, is that in the latter case the factor ring would
be a field, and therefore its only ideals would be 0 and itself.
Why this matters is shown next.

In the polynomial ring GF (2)[x]/[(xn − 1)] the cyclic
shift of a codeword by k is equivalent to multiplication
modulo (xn − 1) of the corresponding code polynomial by
xk. This fact in itself seems unremarkable until we realise
that an arbitrary polynomial a(x) can be considered as a
linear combination of cyclic shifts which, according to the
definition, yields another c(x) that still belongs to the same
code C. Because we already knew that C is a sub-space
of Fn (or a subring of the factor ring), we know that it

is closed under addition: adding two vectors yields a third
vector in the same plane the two vectors define, even if
this plane is immersed in a 3-D space. As a consequence,
the code C satisfies the ideal test and is in fact an ideal
of the ring GF (2)[x]/[(xn − 1)]. Because it is a subset,
the Hamming distance between codewords is greater than
0, which is what makes error correction possible.

The ring of polynomials GF (2)[x] is a Principal Ideal
Domain, which means that every one of its ideals is
principal. In our case we are working with (xn − 1).
The factor ring GF (2)[x]/[(xn − 1)] is not a field and
is not a PID either. However, every one of its ideals is
principal ([12], 245). This implies that our code C is entirely
generated by a single polynomial g(x), aptly called the
generator polynomial. The generator polynomial is the
monic polynomial of least degree (for a particular code) that
belongs to C and from which every element of C can be
generated through multiplication by elements of GF (2)[x]
modulo (xn − 1). There is a unique such polynomial for
any ideal of GF (2)[x]/[(xn − 1)], and each such instance
divides (xn−1) ([13], 32). It follows that to generate all the
possible cyclic codes for a given value of n we need to find
all the irreducible factors of (xn−1). The possible generator
polynomials g(x) are all the possible divisors of (xn − 1),
formed as single irreducible factors or as products of these
irreducible factors. If g(x) is chosed of degree n − k, a
linear code results and the generator matrix can be formed
starting from the simple statement m(x)g(x) = c(x), where
m(x) is a polynomial of degree k−1 representing a message
block. Furthermore, there exists a polynomial h(x) such that
g(x)h(x) = (xn− 1), which gives rise to the check matrix.

In building cyclic codes it is easy to set their length and
dimension. However, the spacing (in terms of Hamming
distance) of the c(x) codewords within the vector space Fn

is not necessarily uniform, which means that the minimum
distance is both uncertain and not easy to find, especially
as n becomes large. BCH codes are also cyclic codes,
but they introduce an additional constraint that makes it
possible to specify the minimum distance d at the outset.
The fact that, as already mentioned, the vector field Fn

has the same cardinality as GF (2n) may at first seem to
imply that Fn is a field, which is potentially confusing since
we just spent considerable effort to prove that Fn (in the
present context) is a ring and not a field. Isomorphism,
however, requires more than cardinality. Because it is a
vector field of remainders, it cannot in fact be considered
independently of the ideal that generated it as a factor
ring, a fact that becomes evident when multiplying elements
modulo different ideals.

For BCH codes the generator polynomial is the least
common multiple of the minimal polynomials of d − 1
consecutive powers of a primitive nth root of unity, for a
desired minimum distance d. A primitive nth root of unity
in a field F is an element a whose order in the multiplicative
group of F is precisely n. As a consequence, a and all
of its powers are roots of the equation xn − 1 = 0. By
the definition of order of a group element, all the powers
of a up to an−1 are distinct. Therefore, all the n roots of
xn − 1 = 0 are generated by a and its powers. From these
we can choose d− 1 consecutive ones.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

85



For a given code length n we need to find a primitive nth

root of unity, and the smallest field that contains GF (q) and
a primitive nth root of unity is GF (qe), where e is the order
of q mod n ([12], 248). If n and q are two coprime integers,
the order of q mod n is the smallest positive integer e for
which qe = 1 mod n. In other words, e is the order of q
in the multiplicative group Zn. For example, if n = 10 and
q = 3, e = 4. In other words, the smallest field that contains
a primitive 10th root of unity over the base field GF (3) is
GF (34). As another example, for GF (2) and n = 21 e = 6,
because 26 = 64 = 1 mod 21. In practice, one tends to use
a value of n = 2e − 1: n = 127 for e = 7, or n = 255
for e = 8. These codes are called, unsurprisingly, primitive
BCH codes since the nth root of unity β in such a case is
a primitive element of GF (2e).

B. An Observation on Gordon’s Method

Gordon’s method [14] is relevant to BCH codes and is
concerned with finding the minimum polynomials of the
roots in an extension field GF (2e). These roots can be
expressed as consecutive powers of a primitive element or as
the remainders of f(x) in the factor ring GF (2)[x]/[f(x)],
where f(x) is the irreducible primitive polynomial that
generates the extension field GF (2e). Because the degree
of these minimum polynomials can be at most e, there are
several in any given extension field with 2e roots. Gordon
realised that, for the same reason, each minimum poly-
nomial can also be expressed modulo the same primitive
polynomial. In other words, each minimum polynomial can
be expressed as one of the elements from the set of its
own roots. This makes the determination of the minimal
polynomials trivially simple and ideally suited for low-
power space probes, where every bit of memory and CPU
cycle counts. Even more surprisingly, we cannot avoid the
conclusion that a minimum polynomial and one of its roots
may actually have the same polynomial form! It is not clear
whether this fact has any significance, but such examples of
structural invariance cannot help but stimulate our curiosity.
This particular example may be explainable by digging
deeper into Galois theory, but is reminiscent of conformal
invariance of differential equations under the action of a
Lie group of transformations or, to a smaller extent, of
the concepts of eigenvector in oscillatory systems or the
renormalisation group of statistical physics.

In this section we have used network coding to give a
flavour for the richness of algebraic structure, which may
at first seem quite far removed from biology. As it happens,
the work reported in [3] indicates otherwise. But let’s turn
to the structure of logic first.

III. LOGIC, ALGEBRA, AND SECURITY

Having presented a general overview of abstract algebra
and its very basic concepts, this section is going to estab-
lish a link between the disciplines of logic, algebra, and
security. For this purpose we give a short introduction to
propositional and first-order logic (FOL). We show how
the different logics find their counterparts in the realm
of abstract algebra. With the informal extension of the
basic concepts of logic and algebra to temporal logic and
quantifier algebras, respectively, we will finally bridge from

algebra to security.

A. Propositional and First-Order Logic

In this section we want to give a short introduction
to propositional and predicate logic, two important fields
of the research area of symbolic logic. Of course, this
introduction cannot be exhaustive and we will refer the
reader to appropriate literature.

Propositional logic (PL) is often called sentential logic.
Both names account for the nature of this logic since it
uses sentences, thus sentential, which can be thought of
as propositions. Classical PL studies the logical values of
sentences and the effects of propositional connectives, such
as and and or, which can be used to form new sentences
out of atomic sentences.

Very basic building blocks of sentences in PL are so
called atomic formulas. As PL studies classical logical
values two atomic formulas explicitly denote the truth
values “true” and “false”. To represent these values in
propositional formulas the symbols > and ⊥ are used. The
interpretation of these symbols is defined using a so-called
Boolean valuation function v. It maps atomic formulas to
a set T = Z2 (see Section II-A) and defines v(⊥) = 0
and v(>) = 1. Additionally, PL knows another type of
atomic formulas: propositional letters. They represent the
truth values of propositions and are therefore sometimes
called variables. Their truth values are also defined by the
valuation function.

To construct formulas with these atomic formulas, PL
also defines operators, negation (¬) and disjunction (∨).
According to the following rules, they can be used to
construct the set P of propositional formulas:

1) If A is an atomic formula, A ∈ P ,
2) If X ∈ P then ¬X ∈ P , and
3) If X, Y ∈ P then (X ∨ Y ) ∈ P .
In natural language ∨ is often denoted by the word “or”,

i.e. if one of the propositions combined by ∨ is “true”, the
combination of the propositions is also “true”. The natural
interpretation of negation is the inversion of the truth value
from “true” to “false” and vice versa. As we implicitly
associated the truth value “true” with 1 we can easily extend
the above valuation function to:

1) v(>) = 1; v(⊥) = 0
2) v(¬X) = 1− v(X) with X ∈ P
3) v(X ∨ Y ) = max(v(X), v(Y )) with X,Y ∈ P
It can be shown that the two operators suffice to express

all possible logical binary operators. As this is burdensome
PL uses abbreviations to express these additional operators.
As we consider binary connectives and because our input
valuation function maps formulas to a two element set,
namely Z2, there are 222

= 16 such possible abbreviations.
The valuation of propositional formulas and the evalua-

tion of polynomials are both important and help us relate
the theoretical concepts to observable or experiential reality.
However, as will be discussed below in Section III-B, our
concern is less with the kind of value the elements of our
set can assume, but more with the structural relationships
within and between sets. For example, the definition of
operators in PL seems different from the definition of an
algebraic field. However, it turns out that the same definition

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

86



is more concisely expressed when using the operators ∧
(multiplication mod 2) and 6≡ (addition mod 2). Similarly,
the possible 16 operators or abbreviations introduced for
convenience are analogous in logic to a field extension
GF (24) over the base field GF (2).

As we have seen above, PL can be used to build formulas
which represent propositions. They can be evaluated using
Boolean valuation. However, PL is unable to derive valid
arguments with respect to the internal structure of a propo-
sition. For this reason first-order logic replaces the pure
atomic formulas by predicates which can have arguments.
Thus, FOL is often called predicate logic. Due to the
introduction of variables FOL also supports quantifiers to
bind variables.

FOL is defined over a first-order language L(R,F , C).
R is a finite, countable set of relation symbols (predicate
symbols) with specific arity. The finite or countable set F
contains function symbols each of which also has associ-
ated an arity. Finally, C is also a finite countable set of
constant symbols. Based on L(R,F , C), FOL defines terms
over variables and, based on these terms, formulas. The
definition of the latter is very similar to the definition of
formulas in PL. The main difference is the use of terms
instead of propositions and the introduction of universal (∀)
and existential (∃) quantifiers.

Compared to PL the definition of FOL semantics is
complicated as we are facing variables, functions, relations,
and quantifiers. It uses a model M = 〈D, I〉 for the first-
order language L(R,F , C) where D is a non-empty set, the
so-called domain of M. I is the interpretation of M which
maps the elements of the language, i.e. constant, relation,
and function symbols, to their algebraic counterparts defined
over the domain D. Using these mappings, it is possible to
also define a recursive mapping for terms. As this definition
associates each term with a value in D we arrive at the
point where it is possible to associate a truth value with
each formula defined in L(R,F , C). This can be done in
analogy to PL. The same propositional constants > and ⊥,
the same set T , as well as the same connectives (denoted
as ◦) are used for this purpose. As for PL it is also possible
to introduce proof procedures which would show the full
power of FOL. However, we skip these details and refer
the interested reader to [15].

B. Algebraic Logic

Algebraic Logic is the field of research which deals with
studies of algebras that are relevant for logic. It additionally
investigates the methodology of solving problems in one
of the two domains and of translating the solution back
into its original domain. This section is going to show how
propositional logic as well as FOL are connected to algebra.

In sub-section III-A we introduced the syntax and seman-
tics of PL and described Boolean valuation. If we want to
generalise the Boolean valuation and apply it to arbitrary
formulas with n propositions we will have to investigate
2n different interpretations. This characteristic becomes a
problem if we want to find logical consequences.

In common language a logical consequence is a statement
which follows from some other statements. In mathematics,
for example, the set of statements could be axioms. So,

s
[⊥]

PPPPPP³³³³³³

B
B
B
B
B
B£

£
£
£
£
£

s
[P ∧R]

³³³³³³

£
£
£
£
£
£B

B
B
B
B
B s

[P ↓ R]

PPPPPP

B
B
B
B
B
B£

£
£
£
£
£

s
[P ≡ R]

£
£
£
£
£
£B

B
B
B
B
B

s
[P 6⊃ R]

³³³³³³PPPPPP s
[P 6⊂ R]
³³³³³³PPPPPP

s[P ] ³³³³³³

s[R] ³³³³³³

s [¬R]

PPPPPP s [¬P ]

PPPPPP

s[P ⊂ R]

³³³³³³

s[P ⊃ R]

³³³³³³PPPPPP

s[P 6≡ R]

B
B
B
B
B
B£

£
£
£
£
£

s[P ∨R] PPPPPP
B
B
B
B
B
B£

£
£
£
£
£

s [P ↑ R]

³³³³³³

£
£
£
£
£
£B

B
B
B
B
B

s[>]

³³³³³³PPPPPP

£
£
£
£
£
£B

B
B
B
B
B

Fig. 2. Hasse diagram of Boolean lattice of PL generated by {P,R}

if we want to prove in PL that a statement is a logical
consequence of other propositional formulas one may use
established proof procedures such as Hilbert systems or
resolution. Logical consequences can also be interpreted as
a means to find propositional formulas which are equivalent,
i.e. which have the same model.

Due to the definition of PL any propositional formula
has infinite equivalent formulas. However, it is possible
to group all propositional formulas based on only two
propositions P, R and obtain a set set E of 16 equivalence
classes. According to the notion of algebra, we look at the
interrelation between these equivalence classes. Among the
16 classes, we first find an equivalence class which only
contains tautologies, i.e. for formula X , v(X) = 1 for every
v. As v(>) = 1 for all v, we call this equivalence class [>].
Its counterpart is the equivalence class [⊥].

Further, it is possible to define a partial order ≤ on E .
This order is illustrated in Fig. 2 It shows a Hasse dia-

gram, which is a graph representation for partially ordered
sets (posets).

Two things can be recognised in this poset (E ,≤). First
of all the poset is bound by a least and a greatest element,
[⊥] and [>] respectively. The second observation is not that
obvious. Take representatives X and Y from two arbitrary
equivalence classes [X] and [Y ]. The application of the
propositional connectives ∨/∧ to X and Y yields a new
propositional formula. This formula Z is a representative
of an equivalence class [Z]. It is the supremum and the
infimum respectively of {[X], [Y ]} and [Z] ∈ E .

Here, we already see that the order-theoretic interpreta-
tion based on the partial order ≤ finds its equivalence in an
algebraic structure based on the two operators ∨ and ∧ and
vice versa. Based on this observation and using the above
Hasse diagram it can additionally be verified that any three
elements of E also have the characteristics of associativity,
commutativity, and absorption. Therefore, the partial order
(E ,≤) is a lattice, which has interesting characteristics from
an order-theoretic as well as from an universal algebra point
of view. Additionally, we can show the distributivity of
any three elements and the existence of the complement
to each representative of an equivalence class. These five
characteristics represent the axioms which have been set up

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

87



by George Boole. Therefore, this distributive complemented
lattice is also called a Boolean algebra.

Tarski and Lindenbaum were the first to precisely discuss
the set of propositional formulas as an algebra with oper-
ators that were induced by the connectives of the proposi-
tional language. More details on the structural analysis are
presented in [8], [16].

Summarising this section we can state that there is a
strong link between PL and algebra. Thus, we are capable
to choose a domain, PL or Boolean algebra, which offers
the most suitable tools and the best knowledge to analyse a
structure. Hence, it would be good if the same correspon-
dence between FOL and algebra held true.

We proceed similarly and outline how Boolean algebra
can be extended to obtain a FOL algebra. For this purpose
we first introduce quantifier algebras. Their definition is
very similar to the construction of a Boolean algebra out
of PL. Thus, from the last section we simply collect the
elements which we need for a formal definition.

Let Γ be the first-order language L(R,F , C) and let
〈vκ〉κ<α be a sequence of variables. Let Θ be a theory of Γ.
We define FΓ as the set of all formulas of Γ. We currently
have to restrict our considerations to the set of formulas
that do not contain the formulas F ≡Θ G. Here relation
≡Θ denotes the equality relation that can be deduced from
Θ. Based on L(R,FΓ/ ≡Θ, C) and the general Boolean
algebra B = 〈B,+, ·, , 0, 1〉 we can define the Boolean
operations + and · by mapping them to there counterparts in
PL, ∨ and ∧ respectively (also see Section III-A). 1 denotes
all formulas of theory Θ. For simplicity and consistency
with previous sections we write >. 0, the negation of all
formulas in > is denoted by ⊥. We obtain the Boolean
algebra 〈FΓ/ ≡Θ, +, ·, ,⊥,>〉.

To define quantifier algebras two more operations have
to be introduced. For ∃ the operation ∃κ with ∃κ(F/ ≡
) is introduced and denotes the equivalence class of all
formulas (∃vκ)F . For quantifier ∀ we define a substitution
operation Sκ

λ . Sκ
λ(F/ ≡) denotes the equivalence class

of the formula which results from F by replacing each
free occurrence of vκ by vλ. Extending the Boolean al-
gebra above we obtain the quantifier algebra of formulas:
〈FΓ/ ≡Θ, +, ·, ,⊥,>, Sκ

λ , ∃κ〉κ,λ<α associated with Θ.
If U is a quantifier algebra as described above a so-

called dimension set of a formula a ∈ A is introduced.
Quantitatively this is the set ¦X of all indexes κ of variables
vκ which would change the valuation of formula X if
substituted with another variable vλ. U is defined to be
locally finite if ¦X is a finite set. It can be shown that every
quantifier algebra of formulas is a locally finite quantifier
algebra. Accordingly, one can show that if U is a locally
finite quantifier algebra then there is a theory Θ such that
U is isomorphic to a quantifier algebra of formulas which
could be derived from Θ.

This result is already very important as it implies that
we can express every theory in FOL without equality by
using locally finite quantifier algebras and thus set up a
link between algebra and FOL. Conversely, we can take a
locally finite quantifier algebra and translate it into a FOL
without equality. To emphasise this link we now remove
the limitations from above that restricted our first-order

formulas to FΓ/ ≡Θ.
This can be done by extending the quantifier algebras by

another equivalence class, the equivalence class of equality
eκλ. It contains all formulas vκ ≡ vλ. This is equivalent to
extending Boolean algebra with substitution and existence
equivalence classes and we obtain a quantifier algebra with
equality: 〈A,+, ·, , 0, 1, Sκ

λ ,∃κ, eκλ〉κ,λ<α.
Henkin et al. defined so called cylindric algebras in [9].

By changing some of the substitution operators defined
above it is relatively easy to show that a cylindric algebra is
a quantifier algebra with equality. From [17] we additionally
know that axioms defining quantifier algebra with equality
are actually all theorems of the theory of cylindric algebras
as shown in [9]. Thus, a cylindric algebra is isomorph to a
quantifier algebras with equality. Consequentially, it is also
possible to map cylindric algebra to FOL with equality. If
we only consider FOL without equality Galler also shows
in [18] that we can map quantifier algebra to polyadic
algebra by slightly modifying the substitution and existence
operators.

We showed that we can directly map FOL into different
types of algebras and vice versa. Daigneault’s interpreta-
tion [19] of Krasner’s general theory on Galois Fields [20]
as polyadic algebras gives even more evidence to the
relation of FOL and algebra. This implies again that we
can analyse effects in the domains which we can map to
algebra in powerful FOL and obtain exciting applications
as shown in [21].

C. Temporal Logic

Section III-A quantitatively introduced PL and FOL.
Generally speaking these logics support the reasoning based
on propositions or terms and formulas. The truth values
are fixed and constant over time, i.e. no matter when you
evaluate a proposition or a first-order formula, the truth
value will always be the same only depending on the
valuation function, the propositions, and variables used.
Temporal logic extends this classical concept and introduces
the dimension of time. Thus, compared with classical logic,
which can describe states and properties of systems, tempo-
ral logic is also able to express sequences of state changes
and properties of behaviour.

Linear Temporal Logic (LTL) extends PL and defines two
temporal operators on a set P: the unary operator © and
the binary operator Q ∪ R with Q,R ∈ P . To give these
operators some semantics the regular valuation function
from Section III-A is extended by:

1) v(©Q) = 1, iff in the next time step v(Q) = 1.
2) v(Q ∪R) = 1, iff v(Q ∧ ¬R) = 1 until v(R) = 1.

This semantics associates these operators with notions of
natural language, namely until for ∪ and next for ©.

Clearly, there are other possible temporal operators that
can be derived from these basic operators. This is compara-
ble to the 16 binary operators expressible in PL. If we take
a closer look at the definition of these operators we realize
that they can be rewritten with “there exists a point in time”
or “for all points in time”. Thus, these definitions suggest
themselves to ask whether we could model LTL using FOL.

In fact, this is possible but the resulting formulas tend to
become very complex and difficult to read. However, the im-

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

88



portant result to remember is that we can model statements
in propositional temporal logic using FOL. Consequentially,
we can use the algebras developed in the last section to
allow also for the algebraisation of unary-temporal logic.

One obvious question follows: Can formulas in first-order
temporal logic be translated into FOL and is it possible to
use the same algebras? The answer to this question has
been discussed in depth by numerous other contributions.
We refer the reader to a good overview and introduction
provided in [22] and [23].

LTL gets its name from the fact that it considers only
behaviours that can be modelled as linear time sequences.
Every state has exactly one successor. However, in in
concurrent systems a state in time usually needs to have
several future states. To model such systems branching time
logics (BTL) [24] have been proposed. They possess a tree
structure in which each state in time has more than one
successor. One of the most popular of these logics is the
computation tree logic (CTL) proposed in [25]. These logics
often provide specialised path quantifiers which support
the “navigation in branches”. Nevertheless, sometimes it is
easier to use existing tools, proof techniques, and analytical
methods that already exist in another domain. Therefore,
we can state here that BTL can be translated into linear
temporal logic. This implies that branching time logic is a
special linear temporal logic and that the same observations
which hold for LTL can also be applied to BTLs.

D. Security

We described how temporal logic can extend classical
PL to describe time-dependent system characteristics. This
expressiveness can be used in many different ways. Very
popular is the use of various types of temporal logic in the
field of security.

Formal Specification is important in many areas of se-
curity research. E.g. distributed computing systems, access
control and software systems, security protocols, etc. often
use logic to specify security characteristics [26] mainly
induced by Pnueli [27], [28] and Lamport [29].

One important characteristic of classical and temporal
logic is the existence of a proof calculus which is mainly
based on the mathematical foundation of these logics in
algebra. This calculus can be used to formally verify the
correctness of system specifications based on logics.

Specifying the security compliant operation of a system
does not only require the thorough specification of its
components. It is also required to thoroughly specify how
the system is restricted and what the environment can or
can not do. Formulas of logic can be used to describe these
requirements.

However, even more important, this work provides links
between biology, algebra, and logic. As we intend to use
algebra to study structures in biological systems with the
special focus on genotypes we can exploit these links to
conduct new and innovative research.

We are currently exploring characteristics and structure
of and operations on Fraglets [30]. They represent a pro-
gramming model which can be compared to the copying
of DNA sequences. Their execution model is similar to
interacting biological systems such as the DNA with the

various enzymes that it generates. Due to this similarity,
one may expect the implementation of genetic algorithms on
these structures to be fairly easy. However, first experiments
show that this is not the case [31]. Nevertheless, by choosing
a programming model which is very similar to bio-chemical
processes in a cell we hope to be able to transfer the
observations made in the realm of biology to a programming
language, i.e. we try to describe structures of Fraglets using
algebra. These structures and their interaction with the
environment correspond to specific program characteristics
and behaviour. This process is comparable to specific struc-
tures of the DNA (genes) which in interaction with their
environment yield different phenotypes of an organism. In
this way, Fraglets form the exemplary bridge head of the
application of our theory to security.

As explained in this section algebra can be mapped into
the realm of logic. Depending on the type of algebra we
obtain from the analysis of our programming model we
will have the possibility to analyse corresponding character-
istics using logic. As explained above, logic is a powerful
means to investigate program properties, including security.
Clearly, this process has its limitations as we will not be
able to investigate any arbitrary program and thus security
characteristic. However, it will be an important step towards
understanding the complicated programming and execution
model of Fraglets and possibly their counterpart in biology,
the DNA and its proteins. Furthermore, if we invert this
analytical process, it becomes clear how we could also
guide program evolution. Being able to express specific
program properties in logic, including some specific security
properties, we will be able to express the same characteristic
in algebra and thus as a structure of the programming
language.

Consequently, the insights that we obtain from this bridge
between biology and logic could also help to improve
genetic operators and therewith basically any automated and
autonomous code generation process. This is due to the fact
that it would become easier to investigate the implications
of a structural change (which corresponds to a genetic
operation) on the program (security) properties. Evidently,
this would also have immediate impact on the design of
fitness functions.

IV. CONCLUSION

The reason we are interested in the metabolism of the cell
is that the cell can be considered an immensely complex
parallel computer that executes a ‘distributed algorithm’.
This term arises from the fact that even though most of the
instructions are coded in the DNA, a significant part of each
metabolic cycle depends on the chemical composition of the
cell moment-by-moment. The DNA instructions are prop-
agated through the cell by diffusion mechanisms coupled
with various reactions. The concentrations of the various
chemical species are far from uniform. In addition, several
kinds of membranes and structural elements separate areas
of different chemical activity and make the internal topology
of the cell nested and extremely complex. Please refer to
[10] for a slightly more extensive discussion.

When a gene is activated and begins to signal to the
cell machinery to fabricate a particular protein, it creates

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

89



several thousand mRNA molecules that set an equal number
of ribosomes to work in the cytoplasm (each cell has
millions of ribosomes, or ‘protein factories’). Such a large
number of proteins will provide a high probability that
the particular function the gene wants to execute will be
executed. Therefore, we can regard the large numbers of
molecules in the cell as a strategy to achieve a form of
dimensional reduction that in computer science we generally
call ‘abstraction’. Several thousand proteins will participate
in a relatively few biochemical reactions to advance one
or more metabolic cycles one execution step. Even though
the interior of the cell is never in equilibrium (it relies on
its ‘fall’ toward equilibrium as the engine that drives all
of its spontaneous self-organising processes—in fact, that’s
what ‘spontaneous’ means), its complex topology is divided
into many areas in each of which a few reactions are active
at any one point in time. From millions of elements we
can therefore see how through a relatively small number
of quasi-equilibrium regions of the cell several hundred
metabolic cycles can be executed in parallel.

Dimensional reduction or abstraction working together
with the fact that the DNA itself is composed of genes that
can be ON or OFF makes it sound plausible that the internal
working of the cell can be modelled through a discrete or
digital framework. We can begin to recognise some of the
concepts discussed in Section II. For example, as explained
in [3] the DNA alphabet of 4 bases can be mapped to finite
field GF (22). Since each codon of 3 bases can take on 4
values, the set of all possible codons, the DNA code, has
64 elements and can be represented as GF (26). Although
such a representation may seem arbitrary, by imposing a
partial ordering based on the hydrophobicity of the amino
acid each codon codes for, Sanchez et al. derive a Boolean
lattice analogous to Fig. 2. As verified experimentally, this
ordering reflects the robustness of the DNA code with
respect to preservation of metabolic function in the presence
of mutations. The most common mutations, in fact, result in
small steps along this lattice, which correspond to mutant
amino acids with similar hydrophobicity. This, in turn, leads
to similar protein folding characteristics. As a consequence,
the resulting protein is in many cases able to perform the
same function.

In conclusion, although we are just at the beginning,
the final goal of this research is to be able to specify
the security or other functional characteristics of a digital
system, and have the specifications map to running code
through a process analogous to gene expression guided by
universal structural properties of the software ‘constituents’
in order to achieve spontaneous order construction through
interaction with the environment.

V. ACKNOWLEDGEMENTS

The authors wish to acknowledge valuable feedback
from Luciana Pelusi and Marinella Petrocchi on the first
draft of this article, and the stimulating conversations with
Sotiris Moschoyiannis and Christopher Alm. This research
is funded by the EU OPAALS NoE (FP6-034824) and
BIONETS IP (FP6-027748).

REFERENCES

[1] S. Kauffman, The Origins of Order: Self-Organisation and Selection
in Evolution. Oxford: Oxford University Press, 1993.

[2] P. Dini, D4.1-DBE Science Vision. www.digital-ecosystem.org,
Deliverables: SP0: DBE Project, 2006.

[3] R. Sanchez, E. Morgado, and R. Grau, “Gene algebra from a genetic
code algebraic structure,” Journal of Mathematical Biology, vol. 51,
pp. 431–457, 2005.

[4] P. Dini, D18.4-Report on self-organisation from a dynamical sys-
tems and computer science viewpoint. www.digital-ecosystem.org,
Deliverables: SP5: DBE Project, 2007.

[5] ——, D18.6-5-Year living roadmap for Digital Ecosystems research
in biology-inspired computing. www.digital-ecosystem.org, Deliv-
erables: SP5: DBE Project, 2007.

[6] G. Boole, The Mathematical Analysis of Logic. Bristol: Thoemmes
Press, 1998 (1847).

[7] P. R. Halmos, Algebraic Logic. AMS, 2007 (1962).
[8] A. Tarski, Logic, Semantics, Metamathematics. Oxford University

Press, 1956, edited by J. H. Woodger.
[9] L. Henkin, J. D. Monk, and A. Tarski, Cylindric Algebras. Ams-

terdam: North-Holland, 1971.
[10] E. Altman, P. Dini, D. Miorandi, and D. Schreckling, Eds., D2.1.1:

Paradigms and Foundations of BIONETS Research. BIONETS,
2007. [Online]. Available: www.bionets.org

[11] S. Moschoyiannis, Group Theory and Error Detecting/Correcting
Codes. Guildford, UK: University of Surrey, Department of Com-
puting, Technical Report SCOMP-TC-02-01, 2001.

[12] P. Cameron, Introduction to Algebra. Oxford: Oxford University
Press, 1998.

[13] M. Purser, Introduction to Error Correcting Codes. Boston: Artech
House, 1995.

[14] J. A. Gordon, “Very simple method to find the minimum polynomial
of an arbitrary non-zero element of a finite field,” Electronics Letters,
vol. 12, pp. 663–664, 1976.

[15] M. Fitting, First-order logic and automated theorem proving (2nd
ed.). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1996.

[16] P. Halmos and S. Givant, Logic as Algebra. Washington, DC:
The Mathematical Association of America, 1998, vol. 21 of Dolciani
Mathematical Expositions.

[17] C. C. Pinter, “A simple algebra of first order logic,” Notre Dame
Journal of Fomal Logic, vol. XIV, no. 3, July 1973.

[18] B. A. Galler, “Cylindric and polyadic algebras,” in Proceedings of
the American Mathematical Society, vol. 8, no. 1, 1957, pp. 176–183.

[19] A. Daigneault, “On automorphisms of polyadic algebras,” Transac-
tions of the American Mathematical Society, vol. 112, no. 1, pp.
84–130, 1964.

[20] M. Krasner, “Généralisation abstraite de la théorie de galois,” in
Algèbre et théorie des nombres, ser. C.N.R.S. Paris: Centre national
de la Recherche scientifique, 1950, no. 24, pp. 163–168.

[21] H. Andréka, I. Németic, and J. Madarász, “On the logical structure of
relativity theories.” Alfréd Rényi Institute of Mathematics, Budapest,
Hungary, Tech. Rep., 2002.

[22] M. Gehrke and Y. Venema, Algebraic Tools for Modal Logic.
Summer School in Logic, Language and Information, 2001.

[23] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cambridge
University Press, 2001.

[24] M. Ben-Ari, Z. Manna, and A. Pnueli, “The temporal logic of branch-
ing time,” in POPL ’81: Proceedings of the 8th ACM SIGPLAN-
SIGACT. New York, NY, USA: ACM Press, 1981, pp. 164–176.

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite state concurrent system using temporal logic specifications:
a practical approach,” in POPL ’83. New York, NY, USA: ACM
Press, 1983, pp. 117–126.

[26] F. Kröger, Temporal logic of programs. New York, NY, USA:
Springer-Verlag New York, Inc., 1987.

[27] A. Pnueli, “The temporal logic of programs,” in Proceedings of the
18th IEEE Symposium on Foundations of Computer Science, 1977,
pp. 46–57.

[28] Z. Manna and A. Pnueli, The temporal logic of reactive and con-
current systems. New York, NY, USA: Springer-Verlag New York,
Inc., 1992.

[29] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, May 1994.

[30] C. Tschudin, “Fraglets - a metabolistic execution model for com-
munication protocols,” in 2nd Symposium on Autonomous Intelligent
Networks and Systems (AINS), Menlo Park, USA, July 2003.

[31] L. Yamamoto, D. Schreckling, and T. Meyer, “Self-Replication and
Self-Modifying Programs in Fraglets,” in Proceedings of IEEE/ACM
Bionetics 2007 (to appear), Budapest, Hungary, December 2007.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

90


