Math 412/512 Practice Problems For Final

1) Let $R=\mathbb{Z} \times \mathbb{Z}$.
a) Describe all maximal ideals in R..
b) Determine all homomorphisms from R to \mathbb{Z}.
2) Let $S=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a, b \in \mathbb{R}\right\} \subset M_{2}(\mathbb{R})$. Is S a principal ideal domain?
3) Let R be a ring and let $x \in R$. Suppose that $\exists n \in \mathbb{N}$ such that $x^{n}=0$ (note: $x^{n}=x \cdot x \cdots \cdots x$ times). Prove that $1-x$ is invertible.
4) Let R be a commutative ring with unity and $I \subset R$ an ideal. Recall that I is prime if for all $x, y \in R, x y \in I$ implies either $x \in I$ or $y \in I$. Prove that R / I is an integral domain if and only if I is prime.
5) Let F be a field. Prove that if $H \leq F^{\times}$is a finite subgroup, then H is cyclic.
6) Suppose that G is a finite group and let p be the smallest prime dividing $|G|$. Let $H \leq G$ be a subgroup with $[G: H]=p$.
a) Prove that H is normal in G.
b) Prove that if G is abelian, $|G|=p(p+2)$ and both $p, p+2$ are primes, then G is cyclic.
7) Let R be an integral domain and let $a \in R$ be a nonzero, noninvertible element of R. Prove that $\langle a, x\rangle \subset R[x]$ is not a principal ideal domain.
8) Let G be a group with the property that for all $g, h, k \in G$, if $g h=k g$, then $h=k$. Prove that G is abelian.
9) Let $G=G L_{2}(\mathbb{R})$ and $H=\left\{\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right): n \in \mathbb{Z}\right\}$. Show that $H \leq G$. Is H normal in G ?
10) Recall that A_{4} denotes all even permutations in S_{4}. Prove that $\mathcal{Z}\left(A_{4}\right)=$ e where e is the identity permutation.
11) Let G be an abelian group of odd order. Show that the product of all elements in G reduces to the identity. Find an example of a group with even order such that the product of all elements in the group is not the identity.
12) Given a group G, recall the definition of the commutator subgroup $[G, G]=\left\{g h g^{-1} h^{-1}: g, h \in G\right\}$. We have shown that $[G, G] \triangleleft G$. Prove that $G /[G, G]$ is abelian. This group is called the abelianization of G.
13) Let F be a field and $f \in F[x]$. Show that f has a multiple zero (or repeated root, if you prefer) in some extension E of F if and only if $f(x)$ and $f^{\prime}(x)$ have a common factor of positive degree in $F[x]$. Here, $f^{\prime}(x)$ refers to the ordinary derivative.
14) Consider $p(x)=x^{4}+x^{2}+1 \in \mathbb{Q}[x]$. Find the splitting field of p.
