
6) Suppose that G is a finite group and let p be the smallest prime dividing
|G|. Let H ≤ G be a subgroup with [G : H] = p.

a) Prove that H is normal in G.

b) Prove that if G is abelian, |G| = p(p+ 2) and both p, p+ 2 are primes,
then G is cyclic.

Proof: If ∃x ∈ G with ord(x) = p(p + 2), then G is cyclic and we are
done.

CASE 1: There exists x ∈ G, ord(x) = p+ 2.

Then if H = 〈x〉, we know [G : H] = p. Since G is abelian, H / G, so we
have that G/H ∼= Zp. Then ∃y ∈ G such that yH is a generator for G/H
and ord(yH) = p. This means that

ypH = (yH)p = H,

and so yp ∈ H, which implies ∃q ∈ N ∪ {0} with yp = xq.

Claim: ord(y) 6= p+ 2.

Suppose ord(y) = p + 2. Then q 6= 0, and so multiplying both sides by
y2, we have

eG = yp+2 = ypy2 = xqy2.

This shows that y−2 = xq, and so y2 = x−q ∈ H. But then

(yH)2 = y2H = H,

and so |G/H| = 2. But 2 + 2 = 4 which is not prime, contradicting the
assumption on p and p+ 2. Hence ord(y) 6= p+ 2, which proves the claim.

Now that we know the claim, we may assume ord(y) = p since ord(y) =
p(p+ 2) implies G is cyclic. Then if xn = ym for some n,m ∈ Z,

eG = (yp)m = (ym)p = (xn)p = xnp.

Then since ord(x) = p+ 2, we have that p+ 2 divides np. As p+ 2 is prime,
p+ 2 divides n, and so xn = eG = ym.

Now consider all elements in G of the form xnym for 0 ≤ n ≤ p + 1 and
0 ≤ m ≤ p − 1. Suppose that xnym = xiyj for some 0 ≤ i, n ≤ p + 1 and
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0 ≤ j,m ≤ p− 1. Then multiplying on the left by x−i and the right by y−m,
we have

xn−i = yj−m

and so by our previous observation, xn−i = yj−m = eG. But by our assump-
tion on the range of i, j, n,m, we must then have n− i = 0 = j −m, and so
n = i and j = m.

Since there are precisely p(p+ 2) = |G| such elements, we obtain

G = {xnym : 0 ≤ n ≤ p+ 1, 0 ≤ m ≤ p− 1}.

As G is abelian, we have G ∼= Zp+2 × Zp
∼= Zp(p+2) since p and p + 2 are

relatively prime. Hence, G is cyclic.

CASE 2: There exists x ∈ G, ord(x) = p.

This is the same argument as Case 1, but switching p and p+ 2.

Now consider arbitrary G. If either |Z(G)| = p or |Z(G)| = p + 2, then
G/Z(G) would be cyclic, which implies that G is abelian by a homework
problem. Since then Z(G) = G, we’d have a contradiction, so either Z(G) =
G or Z(G) = eG. If we can prove the former condition holds, then we’ll be
done.

If there exists x ∈ G, ord(x) = p + 2, then by part a), H = 〈x〉 is
normal in G. By exactly the same argument as above (note that we only
used the assumption that G is abelian at the very beginning and very end of
the argument), we obtain the existence of an element y of order p, that all
elements of the form xnym for 0 ≤ n ≤ p+ 1 and 0 ≤ m ≤ p− 1 are distinct
in G, and that

G = {xnym : 0 ≤ n ≤ p+ 1, 0 ≤ m ≤ p− 1}.

Claim: K = 〈y〉 is normal in G

Recall the definition of the normalizer of K in G:

NG(K) = {z ∈ G : zKz−1 = K}.

From the homework, NG(K) is a subgroup of G, K ≤ NG(K), and
NG(K) = G iff K / G. By order considerations, we need only show that
∃z ∈ NG(K)\K in order to conclude NG(K) = G.
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Consider the inner automorphism φn of G given by φn(g) = xngx−n for
all g ∈ G. Since ord(x) = p + 2, there are only p + 2 distinct φ′ns. Restrict
φn to K for 0 ≤ n ≤ p + 1. As x /∈ K, we know that xn /∈ K for all
such n. Suppose φn(K) 6= K for all 1 ≤ n ≤ p + 1. Then again by order
considerations, φn(K) ∩K = eG as the intersection would be a subgroup of
K, and |K| = p implies the only possible subgroups of K are {eG} and K
itself.

Consider φn(K) ∩ φm(K). Order considerations imply either φn(K) ∩
φm(K) = φn(K) = φm(K) or φn(K) ∩ φm(K) = eG. But if the former case
holds, then K = φ−m(φn(K)) = φn−m(K), and hence n = m. This implies
that for all 0 ≤ n,m ≤ p+ 1,

φn(K) ∩ φm(K) = eG.

Note that every nonidentity element in φn(K) has order p since φn is an
automorphism for all 0 ≤ n ≤ p + 1. Since all p − 1 nonidentity elements
in φn(K) are disjoint from φm(K), we have that G possesses (p − 1)(p + 2)
elements of order p. It then follows that the only elements of order p + 2 in
G are the nonidentity elements of H.

From this, we obtain that there exist 1 ≤ i ≤ p + 1 and 1 ≤ j ≤ p − 1
with

xy = φi(y
j) = xiyjx−i.

Multiplying on the left by p− 1, we obtain

x = xiyjx−iyp−1 = xi(yjx−iy−j)yp−1+j.

As H /G, yjx−iy−j = xk for some 0 ≤ k ≤ p+1. Hence, x = xi+kyp−1+j, and
so by our assumptions on j, p−1+j = 0 mod p. Then j = 1, so xy = xiyx−i.

Now since both H and K are normal in G, xyx−1 ∈ K and y−1xy ∈ H.
Hence, there are 0 ≤ n ≤ p + 1 and 0 ≤ m ≤ p − 1 with xyx−1 = ym and
y−1xy = xn. Multiplying the second equation on the left by y, we obtain
xy = yxn and substituting into the first equation, we have

ym = (xy)x−1 = (yxn)x−1 = yxn−1.

Then multiplying y−1 on the left, we get ym−1 = xn−1, and by our assump-
tions in n and m, n = m = 1. It then follows that both x and y are in
Z(G), and so Z(G) 6= {eG}. By our observation above, it must be true that
Z(G) = G, so G is abelian.
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