6) Suppose that G is a finite group and let p be the smallest prime dividing $|G|$. Let $H \leq G$ be a subgroup with $[G: H]=p$.
a) Prove that H is normal in G.
b) Prove that if G is abelian, $|G|=p(p+2)$ and both $p, p+2$ are primes, then G is cyclic.

Proof: If $\exists x \in G$ with $\operatorname{ord}(x)=p(p+2)$, then G is cyclic and we are done.

CASE 1: There exists $x \in G, \operatorname{ord}(x)=p+2$.
Then if $H=\langle x\rangle$, we know $[G: H]=p$. Since G is abelian, $H \triangleleft G$, so we have that $G / H \cong \mathbb{Z}_{p}$. Then $\exists y \in G$ such that $y H$ is a generator for G / H and $\operatorname{ord}(y H)=p$. This means that

$$
y^{p} H=(y H)^{p}=H,
$$

and so $y^{p} \in H$, which implies $\exists q \in \mathbb{N} \cup\{0\}$ with $y^{p}=x^{q}$.
Claim: $\operatorname{ord}(y) \neq p+2$.
Suppose $\operatorname{ord}(y)=p+2$. Then $q \neq 0$, and so multiplying both sides by y^{2}, we have

$$
e_{G}=y^{p+2}=y^{p} y^{2}=x^{q} y^{2} .
$$

This shows that $y^{-2}=x^{q}$, and so $y^{2}=x^{-q} \in H$. But then

$$
(y H)^{2}=y^{2} H=H
$$

and so $|G / H|=2$. But $2+2=4$ which is not prime, contradicting the assumption on p and $p+2$. Hence $\operatorname{ord}(y) \neq p+2$, which proves the claim.

Now that we know the claim, we may assume $\operatorname{ord}(y)=p$ since $\operatorname{ord}(y)=$ $p(p+2)$ implies G is cyclic. Then if $x^{n}=y^{m}$ for some $n, m \in \mathbb{Z}$,

$$
e_{G}=\left(y^{p}\right)^{m}=\left(y^{m}\right)^{p}=\left(x^{n}\right)^{p}=x^{n p}
$$

Then since $\operatorname{ord}(x)=p+2$, we have that $p+2$ divides $n p$. As $p+2$ is prime, $p+2$ divides n, and so $x^{n}=e_{G}=y^{m}$.

Now consider all elements in G of the form $x^{n} y^{m}$ for $0 \leq n \leq p+1$ and $0 \leq m \leq p-1$. Suppose that $x^{n} y^{m}=x^{i} y^{j}$ for some $0 \leq i, n \leq p+1$ and
$0 \leq j, m \leq p-1$. Then multiplying on the left by x^{-i} and the right by y^{-m}, we have

$$
x^{n-i}=y^{j-m}
$$

and so by our previous observation, $x^{n-i}=y^{j-m}=e_{G}$. But by our assumption on the range of i, j, n, m, we must then have $n-i=0=j-m$, and so $n=i$ and $j=m$.

Since there are precisely $p(p+2)=|G|$ such elements, we obtain

$$
G=\left\{x^{n} y^{m}: 0 \leq n \leq p+1,0 \leq m \leq p-1\right\}
$$

As G is abelian, we have $G \cong \mathbb{Z}_{p+2} \times \mathbb{Z}_{p} \cong \mathbb{Z}_{p(p+2)}$ since p and $p+2$ are relatively prime. Hence, G is cyclic.

CASE 2: There exists $x \in G$, ord $(x)=p$.
This is the same argument as Case 1 , but switching p and $p+2$.
Now consider arbitrary G. If either $|\mathcal{Z}(G)|=p$ or $|\mathcal{Z}(G)|=p+2$, then $G / \mathcal{Z}(G)$ would be cyclic, which implies that G is abelian by a homework problem. Since then $\mathcal{Z}(G)=G$, we'd have a contradiction, so either $\mathcal{Z}(G)=$ G or $\mathcal{Z}(G)=e_{G}$. If we can prove the former condition holds, then we'll be done.

If there exists $x \in G, \operatorname{ord}(x)=p+2$, then by part $a), H=\langle x\rangle$ is normal in G. By exactly the same argument as above (note that we only used the assumption that G is abelian at the very beginning and very end of the argument), we obtain the existence of an element y of order p, that all elements of the form $x^{n} y^{m}$ for $0 \leq n \leq p+1$ and $0 \leq m \leq p-1$ are distinct in G, and that

$$
G=\left\{x^{n} y^{m}: 0 \leq n \leq p+1,0 \leq m \leq p-1\right\} .
$$

Claim: $K=\langle y\rangle$ is normal in G
Recall the definition of the normalizer of K in G :

$$
N_{G}(K)=\left\{z \in G: z K z^{-1}=K\right\} .
$$

From the homework, $N_{G}(K)$ is a subgroup of $G, K \leq N_{G}(K)$, and $N_{G}(K)=G$ iff $K \triangleleft G$. By order considerations, we need only show that $\exists z \in N_{G}(K) \backslash K$ in order to conclude $N_{G}(K)=G$.

Consider the inner automorphism ϕ_{n} of G given by $\phi_{n}(g)=x^{n} g x^{-n}$ for all $g \in G$. Since $\operatorname{ord}(x)=p+2$, there are only $p+2$ distinct $\phi_{n}^{\prime} s$. Restrict ϕ_{n} to K for $0 \leq n \leq p+1$. As $x \notin K$, we know that $x^{n} \notin K$ for all such n. Suppose $\phi_{n}(K) \neq K$ for all $1 \leq n \leq p+1$. Then again by order considerations, $\phi_{n}(K) \cap K=e_{G}$ as the intersection would be a subgroup of K, and $|K|=p$ implies the only possible subgroups of K are $\left\{e_{G}\right\}$ and K itself.

Consider $\phi_{n}(K) \cap \phi_{m}(K)$. Order considerations imply either $\phi_{n}(K) \cap$ $\phi_{m}(K)=\phi_{n}(K)=\phi_{m}(K)$ or $\phi_{n}(K) \cap \phi_{m}(K)=e_{G}$. But if the former case holds, then $K=\phi_{-m}\left(\phi_{n}(K)\right)=\phi_{n-m}(K)$, and hence $n=m$. This implies that for all $0 \leq n, m \leq p+1$,

$$
\phi_{n}(K) \cap \phi_{m}(K)=e_{G} .
$$

Note that every nonidentity element in $\phi_{n}(K)$ has order p since ϕ_{n} is an automorphism for all $0 \leq n \leq p+1$. Since all $p-1$ nonidentity elements in $\phi_{n}(K)$ are disjoint from $\phi_{m}(K)$, we have that G possesses $(p-1)(p+2)$ elements of order p. It then follows that the only elements of order $p+2$ in G are the nonidentity elements of H.

From this, we obtain that there exist $1 \leq i \leq p+1$ and $1 \leq j \leq p-1$ with

$$
x y=\phi_{i}\left(y^{j}\right)=x^{i} y^{j} x^{-i} .
$$

Multiplying on the left by $p-1$, we obtain

$$
x=x^{i} y^{j} x^{-i} y^{p-1}=x^{i}\left(y^{j} x^{-i} y^{-j}\right) y^{p-1+j} .
$$

As $H \triangleleft G, y^{j} x^{-i} y^{-j}=x^{k}$ for some $0 \leq k \leq p+1$. Hence, $x=x^{i+k} y^{p-1+j}$, and so by our assumptions on $j, p-1+j=0 \bmod \mathrm{p}$. Then $j=1$, so $x y=x^{i} y x^{-i}$.

Now since both H and K are normal in $G, x y x^{-1} \in K$ and $y^{-1} x y \in H$. Hence, there are $0 \leq n \leq p+1$ and $0 \leq m \leq p-1$ with $x y x^{-1}=y^{m}$ and $y^{-1} x y=x^{n}$. Multiplying the second equation on the left by y, we obtain $x y=y x^{n}$ and substituting into the first equation, we have

$$
y^{m}=(x y) x^{-1}=\left(y x^{n}\right) x^{-1}=y x^{n-1} .
$$

Then multiplying y^{-1} on the left, we get $y^{m-1}=x^{n-1}$, and by our assumptions in n and $m, n=m=1$. It then follows that both x and y are in $\mathcal{Z}(G)$, and so $\mathcal{Z}(G) \neq\left\{e_{G}\right\}$. By our observation above, it must be true that $\mathcal{Z}(G)=G$, so G is abelian.

