Math 451/551 Assignment 1

Due Monday, January 24

1) a) If S is a set, prove that $\left(S^{c}\right)^{c}=S$.
b) If S and T are sets, show that if $S \subseteq T$, then $T^{c} \subseteq S^{c}$. Either prove the converse is true or give a counterexample.
2) (Exercise 1.2.10) Let $y_{1}=1$ and for each $n \in \mathbb{N}$, define $y_{n+1}=\frac{3 y_{n}+4}{4}$.
a) Use induction to prove that the sequence satisfies $y_{n}<4$ for all $n \in \mathbb{N}$.
b) Use another induction argument to show the sequence $\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ is increasing.
3) (Exercise 1.2.7) Given a function $f: D \rightarrow \mathbb{R}$ and a subset $B \subseteq \mathbb{R}$, let $f^{-1}(B)$ be the set of all points from the domain D that get mapped into B; that is, $f^{-1}(B)=\{x \in D: f(x) \in B\}$. This set is called the preimage of B.
a) Let $f(x)=x^{2}$. If A is the closed interval $[0,4]$ and B is the closed interval $[-1,1]$, find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A) \cap f^{-1}(B)=f^{-1}(A \cap B)$ in this case? Does $f^{-1}(A) \cup f^{-1}(B)=f^{-1}(A \cup B)$?
b) The good behavior of preimages demonstrated in (a) is completely general. Show that for an arbitrary function $g: \mathbb{R} \rightarrow \mathbb{R}$, it is always true that $g^{-1}(A) \cap g^{-1}(B)=g^{-1}(A \cap B)$ and $g^{-1}(A) \cup g^{-1}(B)=g^{-1}(A \cup B)$ for all sets $A, B \subseteq \mathbb{R}$.
4) Let $S \subseteq \mathbb{R}$ and define

$$
\chi_{S}(x)= \begin{cases}1, & x \in S \\ 0, & x \notin S\end{cases}
$$

The function χ_{S} is usually called the characteristic or indicator function for S.
a) Determine $\chi_{S}^{-1}([0,1)), \chi_{S}^{-1}((0,1)), \chi_{S}^{-1}((0,1])$ and $\chi_{S}^{-1}([0,1])$.
b) If T is an arbitrary subset of \mathbb{R}, characterize $\chi_{S}^{-1}(T)$, with proof.
c) Prove that, for all subsets S and T of $\mathbb{R}, \chi_{S \cap T}=\chi_{S} \cdot \chi_{T}$ and $\chi_{S \cup T}=$ $\chi_{S}+\chi_{T}-\chi_{S \cap T}$
5) Let $S, T \subseteq \mathbb{R}$. Suppose $\sup (S)$ and $\sup (T)$ both exist and that neither S nor T is empty.
a) Prove that $\inf (S)=-\sup (-S)$ where $-S=\{-x \mid x \in S\}$.
b) Show that $\sup (S \cup T)=\max \{\sup S, \sup T\}$.
c) Is there a statement similar to b) for $\sup (S \cap T)$? Justify your reasoning.

