Math 451/551 Assignment 1

Due Thursday, September 20

1) Let S, T, and A be sets.
a) Prove that $A \cup(S \cap T)=(A \cup S) \cap(A \cup T)$.
b) If S^{c} denotes the complement of a set S, prove that

$$
A \cap(S \cup T)^{c}=\left(A \cap S^{c}\right) \cap\left(A \cap T^{c}\right)
$$

2) a) Let $n, k \in \mathbb{N} \cup\{0\}, 0 \leq k \leq n$, and define $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. Determine the value of $\sum_{k=0}^{n}\binom{n}{k}$, then use induction to prove that your guess is correct.
b) (Exercise 1.2.11) Use induction (or any other method you prefer) to show that if a set A contains n elements, then the number of different subsets of A is equal to 2^{n}. (Keep in mind that the empty set \emptyset is considered to be a subset of every set.)
3) Given a function $f: S \rightarrow T$ and a subset $A \subseteq T$, let $f^{-1}(A)$ be the set of all points from the domain S that get mapped into A; that is, $f^{-1}(A)=$ $\{x \in S: f(x) \in A\}$. This set is called the preimage of A.
a) Demonstrate that for any such map f and $B \subseteq \operatorname{ran}(f), f\left(f^{-1}(B)\right)=B$. Is it true that $f^{-1}(f(A))=A$ for all $A \subseteq S$? Prove or give a counterexample.
b) (Exercise 1.2.7, b)) Show that for an arbitrary function $g: S \rightarrow T$, it is always true that $g^{-1}(A) \cap g^{-1}(B)=g^{-1}(A \cap B)$ and $g^{-1}(A) \cup g^{-1}(B)=$ $g^{-1}(A \cup B)$ for all sets $A, B \subseteq T$. Convince yourself (but don't prove it unless you want to) that the same results holds for infinite unions and intersections.
4) Let $S \subseteq \mathbb{R}$ be nonempty and define

$$
\chi_{S}(x)= \begin{cases}1, & x \in S \\ 0, & x \notin S\end{cases}
$$

The function χ_{S} is usually called the characteristic or indicator function for S.
a) Determine $\chi_{S}^{-1}(\mathbb{Q}), \chi_{S}^{-1}((0, \infty)), \chi_{S}^{-1}([0,1))$ and $\chi_{S}^{-1}([0,1])$.
b) If T is an arbitrary subset of \mathbb{R}, determine $\chi_{S}^{-1}(T)$, with proof. Hint: your answer will depend on the elements in T.
c) Prove that, for all nonempty subsets S and T of $\mathbb{R}, \chi_{S \cap T}=\chi_{S} \cdot \chi_{T}$ and $\chi_{S \cup T}=\chi_{S}+\chi_{T}-\chi_{S \cap T}$
5) Let $S, T \subseteq \mathbb{R}$. Suppose neither S nor T is empty and that $\sup (S)$ and $\sup (T)$ both exist.
a) Prove that $\inf (S)=-\sup (-S)$ where $-S=\{-x \mid x \in S\}$.
b) Show that $\sup (S \cup T)=\max \{\sup S, \sup T\}$.
c) Is there a statement similar to b) for $\sup (S \cap T)$? Justify your reasoning.

