Math 451/551 Assignment 3

Due Thursday, February 10

1) Show that the map $\phi:(0,1) \rightarrow \mathbb{R}$ given in class by

$$
\phi(x)= \begin{cases}\frac{1}{x}-2 & 0<x \leq \frac{1}{2} \\ 2+\frac{1}{x-1} & \frac{1}{2}<x<1\end{cases}
$$

is a bijection.
2) (Exercise 2.3.5, variant) a) Show that if $\left(b_{n}\right)_{n \in \mathbb{N}}$ converges to b, then the sequence of absolute values $\left(\left|b_{n}\right|\right)_{n \in \mathbb{N}}$ converges to $|b|$.
b) Is the converse of part a) true? That is, if we know that $\left(\left|b_{n}\right|\right)_{n \in \mathbb{N}}$ converges, can we then deduce $\left(b_{n}\right)_{n \in \mathbb{N}}$ converges?
3)(continued fractions) Let $b_{1}=1$ and $b_{n}=1+\frac{1}{1+b_{n-1}}$ for all $n \geq 2$. Note that $b_{n} \geq 1$ for all $n \in \mathbb{N}$.
a) Show that $b_{2 k+1}^{2}<2$ for all $k \in \mathbb{N}$.
b) Show that $b_{2 k}^{2}>2$ for all $k \in \mathbb{N}$.
c) Prove that $\left(b_{2 k+1}\right)_{k \in \mathbb{N}}$ is increasing. Conclude that $\left(b_{2 k+1}\right)_{k \in \mathbb{N}}$ converges.
d) Prove that $\left(b_{2 k}\right)_{k \in \mathbb{N}}$ is decreasing. Conclude that $\left(b_{2 k}\right)_{k \in \mathbb{N}}$ converges.
e) (Extra Credit) Determine, with proof, that $\left(b_{2 k}\right)_{k \in \mathbb{N}}$ and $\left(b_{2 k+1}\right)_{k \in \mathbb{N}}$ both converge to the same number. Hence, $\left(b_{n}\right)_{n \in \mathbb{N}}$ converges to that number. Once more, I will accept no written solution. You must present your solution to me in my office.
4) (Exercise 2.4.6, variant) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence.
a) Prove that the sequence defined for all $n \in \mathbb{N}$ by $y_{n}=\sup \left\{a_{k}: k \geq n\right\}$ converges.

The limit superior of $\left(a_{n}\right)_{n \in \mathbb{N}}$, or $\limsup a_{n}$, is then defined by

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} y_{n} .
\end{gathered}
$$

where $\left(y_{n}\right)_{n \in \mathbb{N}}$ is the sequence from part (a) of this exercise.
b) If $n \in \mathbb{N}$ and $z_{n}=\inf \left\{a_{k}: k \geq n\right\}$, we define the limit inferior of $\left(a_{n}\right)_{n \in \mathbb{N}}$, or $\liminf _{n \rightarrow \infty}\left(a_{n}\right)$, by

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} z_{n}
$$

As in a), it can be shown that the limit exists. For the sequence

$$
a_{n}=(-1)^{n},
$$

determine $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$.
c) Prove that $\liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}$ for every bounded sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$. Observe that part b) gives an example of a sequence that exhibits strict inequality.
d) Show that $\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}$ if and only if $\lim _{n \rightarrow \infty} a_{n}$ exists. In this case, all three share the same value.

Extra Credit: Prove that $|\mathbb{R}|=\left|2^{\mathbb{Z}}\right|$. I will accept no written solution. You must present your solution to me in my office.

