Math 451/551 Assignment 7

Due Tuesday, April 17

1) Let $f: X \rightarrow Y$ where X and Y are sets. Prove that
a) If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of Y, then $f^{-1}\left(\cup_{\alpha \in \mathcal{I}} S_{\alpha}\right)=\cup_{\alpha \in \mathcal{I}} f^{-1}\left(S_{\alpha}\right)$.
b) If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of Y, then $f^{-1}\left(\cap_{\alpha \in \mathcal{I}} S_{\alpha}\right)=\cap_{\alpha \in \mathcal{I}} f^{-1}\left(S_{\alpha}\right)$.
c) If $\left\{T_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of X, then $f\left(\cup_{\alpha \in \mathcal{I}} T_{\alpha}\right) \subseteq \cup_{\alpha \in \mathcal{I}} f\left(T_{\alpha}\right)$.
2) Let X and Y be metric spaces and suppose $f: X \rightarrow Y$ is continuous.
a) Prove that for all $S \subseteq Y, \overline{f^{-1}(S)} \subseteq f^{-1}(\bar{S})$.
b) Provide an example of metric spaces X and Y and a continuous map $f: X \rightarrow Y$ where $\overline{f^{-1}(S)} \neq f^{-1}(\bar{S})$.
3) Let f be a continuous (in the usual metric) function on the closed interval $[0,1]$ with range also contained in $[0,1]$.
a) (Exercise 4.5.7) Prove that f must have a fixed point; that is, show $f(x)=x$ for at least one value of $x \in[0,1]$.
b) (Exercise 5.3.5) If, in addition, f is differentiable on $[0,1]$ and $f^{\prime}(x) \neq 1$, then f can have at most one fixed point in $[0,1]$.
4) Let f be a twice-differentiable function from \mathbb{R} to \mathbb{R}. Show that if whenever

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

then $c=\frac{a+b}{2}, f$ must be a quadratic polynomial. Hint: Find Steve Maguire or Azreal Dunbar.
5) Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be metric spaces. A function $f: X \rightarrow Y$ is called Lipschitz if there exists an $M>0$ such that

$$
d_{2}(f(x), f(y)) \leq M d_{1}(x, y)
$$

for all $x, y \in X$.
a) Show that any Lipschitz function is continuous.
b) (Exercise 5.3.1) If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable and if f^{\prime} is continuous on $[a, b]$, show that f is Lipschitz on $[a, b]$.

