Math 451/551 Assignment 2

Due Tuesday, February 1

1) (Exercise 1.2.5) Let x and y be real numbers. Prove that $||x|-|y|| \leq|x-y|$.
2) A real number α is said to be algebraic if there exist integers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ and a polynomial $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ with $p(\alpha)=0$. Any real number that is not algebraic is said to be transcendental. It is by no means obvious that transcendental numbers exist, but both π (Lindemann, 1880) and e (Hermite, 1873) are transcendental.
a) It is a standard, though technical, result in Abstract Algebra that the sum of two algebraic numbers is algebraic. Assuming this result, show that if α is transcendental and β is algebraic, then $\alpha+\beta$ is transcendental.
b) (Exercise 1.4.12) Fix $n \in \mathbb{N}$ and let A_{n} be the algebraic numbers obtained as roots of polynomials with integer coefficients that have degree n. Using the fact that every polynomial has a finite number of roots, show that A_{n} is countable. (Hint: for each $m \in \mathbb{N}$, consider polynomials $\sum_{i=0}^{n} a_{i} x^{i}$ that satisfy $\left.\sum_{i=0}^{n}\left|a_{i}\right| \leq m.\right)$
c) (Exercise 1.4.12) Argue that the set of all algebraic numbers is countable.
d) Check that the algebraic numbers are dense in \mathbb{R}.
e) (Extra Credit, worth an A in the course) Prove that $\pi+e$ is transcendental.
3) a) Prove that the intervals $[0,1)$ and $(0,1]$ have the same cardinality.
b) Prove that the intervals $[0,1]$ and $(0,1)$ have the same cardinality.
c) Prove that the intervals $(0,1]$ and $[0,1]$ have the same cardinality (you may use any of the equivalences established in a) and b)).
d) Show that if x, y, a, and b are real numbers with $x<y$ and $a<b$, then the cardinality of $[a, b]$ equals the cardinality of $[x, y]$.
e) Extend your result from part d) to open and half-open intervals.
f) Conclude that any two finite intervals have the same cardinality.
e) (Extra Credit) Show that \mathbb{R}^{2} and \mathbb{R} have the same cardinality. Note: I will accept no written solution to this problem. If you want credit, you have to explain your solution to me in my office.
