Math 451/551 Assignment 4

Due Tuesday, October 16

1) (Exercise 2.7.5) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be Cauchy sequences of real numbers.
a) Show, without appealing to the Cauchy Criterion, that if $z_{n}=x_{n}+y_{n}$, then $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence of real numbers.
b) Do the same for $w_{n}=x_{n} \cdot y_{n}$.
2) Recall the following construction from class: let C be the space of all Cauchy sequences of rational numbers. Let $x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right) \in$ C and define an equivalence relation on C by

$$
x \sim y \text { iff } \lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0
$$

We proved that this is an equivalence relation on C. Let X be the space whose elements are equivalence classes of elements in C. If $x \in C$, let $[x]$ denote the resulting point in X.
a) Let $q \in \mathbb{Q}$ and consider the Cauchy sequence $Q \in C$,

$$
Q=(q)_{n \in \mathbb{N}} .
$$

Show that the map $\phi: \mathbb{Q} \rightarrow X$ given by $\phi(q)=[Q]$ is an injection.
b) Define, for elements $[x],[y] \in X$,

$$
\begin{aligned}
{[x] \cdot[y] } & =\left[\left(x_{n} \cdot y_{n}\right)_{n \in \mathbb{N}}\right], \\
{[x]+[y] } & =\left[\left(x_{n}+y_{n}\right)_{n \in \mathbb{N}}\right] .
\end{aligned}
$$

By Exercise \#1, the term-wise sum or product of Cauchy sequences is again Cauchy, and so these operations define elements in X. Check that both these operations are well-defined.
c) It follows from associativity and commutativity of multiplication on rational numbers that both operations defined in b) are commutative and associative. Check that distributivity of "." over "+" holds.
3) Let (X, d) be a metric space and let Y be a nonempty subset of X. Show that d defines a metric on Y.
4) Let

$$
\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \mid a_{n} \in \mathbb{R} \text { and } \sup _{n \in \mathbb{N}}\left|a_{n}\right|<\infty\right\}
$$

If $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ and $b=\left(b_{n}\right)_{n \in \mathbb{N}}$ are in ℓ_{∞}, define a metric on ℓ_{∞} by

$$
d(a, b)=\sup _{n \in \mathbb{N}}\left|a_{n}-b_{n}\right| .
$$

a) Prove that d is actually a metric.
b) Deduce from problem $\# 3$ that d is a metric on the space c defined in class.
5) If $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are Cauchy sequences in a metric space X with metric d, show that the sequence $\left(d\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ converges. Hint: For any n, m, we have by the triangle inequality

$$
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

Now subtract $d\left(x_{m}, y_{m}\right)$ from both sides.
EXTRA CREDIT: All notation is as in Exercise \#2. Again, no written solutions are permitted, but must be justified in office hours.

If $[x],[y] \in X$, define

$$
D([x],[y])=\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right| .
$$

By Exercise \#5, this limit exists.
a) Show that $D([x],[y])$ is well-defined; that is, it is unchanged if $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are replaced by equivalent sequences.
b) Prove that D, as given in part b), is a metric on X.
c) Prove that $\phi(\mathbb{Q})$ is dense in X, i.e., for all $\varepsilon>0$ and $[x] \in X$, there exists a $q \in Q$ with $D([x], \phi(q))<\varepsilon$.

