Math 451/551 Assignment 7

Due Monday, December 10

1) Let $f: X \rightarrow Y$ where X and Y are sets. Prove that
a) If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of Y, then $f^{-1}\left(\cup_{\alpha \in \mathcal{I}} S_{\alpha}\right)=\cup_{\alpha \in \mathcal{I}} f^{-1}\left(S_{\alpha}\right)$.
b) If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of Y, then $f^{-1}\left(\cap_{\alpha \in \mathcal{I}} S_{\alpha}\right)=\cap_{\alpha \in \mathcal{I}} f^{-1}\left(S_{\alpha}\right)$.
c) If $\left\{T_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of X, then $f\left(\cup_{\alpha \in \mathcal{I}} T_{\alpha}\right)=\cup_{\alpha \in \mathcal{I}} f\left(T_{\alpha}\right)$.
2) (Exercise 3.4.9) A set S in a metric space X is called totally disconnected if for any $x, y \in S$, there exist separated sets A and B with $x \in A, y \in B$ and $S=A \cup B$. Let $C=\cap_{n=1}^{\infty} C_{n}$ be the Cantor set. Refer to the description given in class for the notation, or switch to the book's less precise, though more intuitive, definition.
a) Given $x, y \in C$ with $x<y$, set $\varepsilon=y-x$. For each $n \in \mathbb{N}, C_{n}$ consists of a finite union of closed intervals. Explain why there must exist an N large enough so that it is impossible for x and y both to belong to the same closed interval in C_{N}.
b) Argue that for all $x, y \in C$, there exists $z \notin C$ with $x<z<y$. Explain how this proves that there can be no interval of the form (a, b) with $a<b$ contained in C.
c) Show that C is totally disconnected.
3) a) Let f and g be two continuous functions on \mathbb{R} with the usual metric and let $S \subset \mathbb{R}$ be countable. Show that if $f(x)=g(x)$ for all $x \in S^{c}$, then $f(x)=g(x)$ for all $x \in \mathbb{R}$.
b) Let f and g be continuous functions from a metric space X into a metric space Y. Let S be a dense subset of X. Prove that $f(S)$ is dense in $f(X)$ and that if $f(s)=g(s)$ for all $s \in S$, then $f(x)=g(x)$ for all $x \in X$.
4) Characterize all continuous functions from \mathbb{N} with the discrete metric into \mathbb{R} with the usual metric.
5) Let f be continuous in the usual metric from the closed interval $[0,1]$ to $[0,1]$.
a) (Exercise 4.5.7) Prove that f must have a fixed point; that is, show $f(x)=x$ for at least one value of $x \in[0,1]$.
b) (Exercise 5.3.5) If, in addition, f is differentiable on $[0,1]$ and $f^{\prime}(x) \neq 1$, then f can have at most one fixed point in $[0,1]$.
6) Let f be a twice-differentiable function from \mathbb{R} to \mathbb{R}. Show that if whenever

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

then $c=\frac{a+b}{2}$, it must be true that f is a quadratic polynomial. Hint: Find Steve Maguire or Azreal Dunbar.
7) Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be metric spaces. A function $f: X \rightarrow Y$ is called Lipschitz if there exists an $M>0$ such that

$$
d_{2}(f(x), f(y)) \leq M d_{1}(x, y)
$$

for all $x, y \in X$.
a) Show that any Lipschitz function is continuous.
b) (Exercise 5.3.1) If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable and if f^{\prime} is continuous on $[a, b]$, show that f is Lipschitz on $[a, b]$.

