Math 451/551 Assignment 7

Due Monday, December 10

1) Let $f: X \to Y$ where X and Y are sets. Prove that

a) If $\{S_{\alpha}\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of Y, then $f^{-1}(\bigcup_{\alpha \in \mathcal{I}} S_{\alpha}) = \bigcup_{\alpha \in \mathcal{I}} f^{-1}(S_{\alpha})$.

b) If $\{S_{\alpha}\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of Y, then $f^{-1}(\bigcap_{\alpha \in \mathcal{I}} S_{\alpha}) = \bigcap_{\alpha \in \mathcal{I}} f^{-1}(S_{\alpha})$.

c) If $\{T_{\alpha}\}_{\alpha \in \mathcal{I}}$ is a collection of subsets of X, then $f(\bigcup_{\alpha \in \mathcal{I}} T_{\alpha}) = \bigcup_{\alpha \in \mathcal{I}} f(T_{\alpha})$.

2) (Exercise 3.4.9) A set S in a metric space X is called *totally disconnected* if for any $x, y \in S$, there exist separated sets A and B with $x \in A, y \in B$ and $S = A \cup B$. Let $C = \bigcap_{n=1}^{\infty} C_n$ be the Cantor set. Refer to the description given in class for the notation, or switch to the book's less precise, though more intuitive, definition.

a) Given $x, y \in C$ with x < y, set $\varepsilon = y - x$. For each $n \in \mathbb{N}$, C_n consists of a finite union of closed intervals. Explain why there must exist an N large enough so that it is impossible for x and y both to belong to the same closed interval in C_N .

b) Argue that for all $x, y \in C$, there exists $z \notin C$ with x < z < y. Explain how this proves that there can be no interval of the form (a, b) with a < b contained in C.

c) Show that C is totally disconnected.

3) a) Let f and g be two continuous functions on \mathbb{R} with the usual metric and let $S \subset \mathbb{R}$ be countable. Show that if f(x) = g(x) for all $x \in S^c$, then f(x) = g(x) for all $x \in \mathbb{R}$.

b) Let f and g be continuous functions from a metric space X into a metric space Y. Let S be a dense subset of X. Prove that f(S) is dense in f(X) and that if f(s) = g(s) for all $s \in S$, then f(x) = g(x) for all $x \in X$.

4) Characterize all continuous functions from \mathbb{N} with the discrete metric into \mathbb{R} with the usual metric.

5) Let f be continuous in the usual metric from the closed interval [0, 1] to [0, 1].

a) (Exercise 4.5.7) Prove that f must have a fixed point; that is, show f(x) = x for at least one value of $x \in [0, 1]$.

b) (Exercise 5.3.5) If, in addition, f is differentiable on [0, 1] and $f'(x) \neq 1$, then f can have at most one fixed point in [0, 1].

6) Let f be a twice-differentiable function from \mathbb{R} to \mathbb{R} . Show that if whenever

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

then $c = \frac{a+b}{2}$, it must be true that f is a quadratic polynomial. *Hint*: Find Steve Maguire or Azreal Dunbar.

7) Let (X, d_1) and (Y, d_2) be metric spaces. A function $f : X \to Y$ is called *Lipschitz* if there exists an M > 0 such that

$$d_2(f(x), f(y)) \le M d_1(x, y)$$

for all $x, y \in X$.

a) Show that any Lipschitz function is continuous.

b) (Exercise 5.3.1) If $f : [a, b] \to \mathbb{R}$ is differentiable and if f' is continuous on [a, b], show that f is Lipschitz on [a, b].