Math 412/512 Midterm

IN-CLASS PORTION

Tuesday, March 13th

1) a) Define what it means for two sets S and T to have the same cardinality.
b) Define what it means for a set S to be countable.
c) Give an example of 2 infinite sets that do not have the same cardinality.
2) a) State the Completeness Axiom for the real numbers \mathbb{R} (equivalent statements are acceptable).
b) We have shown that the rational numbers \mathbb{Q} are dense in \mathbb{R}. Explain what this means using mathematical terminology.
c) Give an example of a dense, infinite, proper subset S of \mathbb{R} that is NOT \mathbb{Q}.
3) a) Define what it means for a sequence of real numbers $\left(x_{n}\right)_{n \in \mathbb{N}}$ to converge to a real number L.
b) State the Monotone Convergence Theorem.
c) Give an example of a bounded sequence of real numbers that does not converge.
4) a) Define a subsequence of a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers.
b) State the Bolzano-Weierstrass Theorem.
c) Give an example of a sequence of real numbers with no convergent subsequence.
5) a) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. Define what it means for the series $\sum_{n=1}^{\infty} x_{n}$ to converge.
b) State the comparison test.
c) Give an example of a convergent series with all nonnegative terms.
6) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers that converges to zero. Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. If $z_{n}=x_{n} \cdot y_{n}$ for all $n \in \mathbb{N}$, prove that $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges to zero.

Math 412/512 Midterm

TAKE-HOME PORTION

Due Thursday, March 15th

General rules: You may use your textbook and notes as resources, but no other texts and certainly no people other than yourself.

1) Let $a_{1}=2$ and define a_{n} recursively for $n \in \mathbb{N}, n \geq 2$, by

$$
a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{3}{a_{n-1}}\right) .
$$

a) Prove that $a_{n}^{2} \geq 3$ for all $n \in \mathbb{N}$. Hint: $\frac{x+y}{2} \geq \sqrt{x y}$ for all $x, y \geq 0$.
b) Prove that $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.
c) Deduce that $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges and prove that $\lim _{n \rightarrow \infty} a_{n}=\sqrt{3}$.
2) Consider \mathbb{R}^{2} as a metric space with the metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

a) Prove that \mathbb{Q}^{2} is dense in \mathbb{R}^{2}.
b) Prove that there exists a subset S of \mathbb{R}^{2} such that S and S^{c} are both uncountable and S is dense in \mathbb{R}^{2}.
3) a) For all $n \in \mathbb{N}$, let $a_{n} \in\{0,1\}$ be any sequence of zeroes and ones. Show that $\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}$ always converges.
b) Let $x \in[0,1]$. Prove that there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{n} \in$ $\{0,1\}$ for all $n \in \mathbb{N}$ such that

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}
$$

This is known as the binary expansion of x.
4) Use the Monotone Convergence Theorem (every bounded, monotonic sequence of real numbers converges) to give a proof of the Nested Interval Property (the intersection of any nested sequence of closed intervals is nonempty).

