Math 412/512 Midterm IN-CLASS PORTION

Monday, October 29th

1) a) Define an injection between two sets S and T.
b) Define what it means for a set S to be uncountably infinite.
c) Give an example of 2 infinite sets that have the same cardinality.
2) a) Define the supremum of a bounded set of real numbers.
b) State the Archimedean Property of the real numbers.
c) Give an example of a bounded set of real numbers whose supremum is an integer.
3) a) State the Nested Interval Property.
b) Give an example of a nested sequence of intervals whose intersection is empty.
4) a) State the Monotone Convergence Theorem.
b) State the Bolzano-Weierstrass Theorem.
c) Give an example of a sequence of real numbers that contains a monotonically decreasing convergent subsequence.
5) a) Provide the definition of a metric space.
b) Define a Cauchy sequence in a metric space.
c) Define what it means for a metric space (X, d) to be complete.
d) Give an example of a metric space that is complete.
6) Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers and suppose $\lim _{n \rightarrow \infty} x_{n}=L \neq 0$. Let $y_{n}=(-1)^{n} x_{n}$. Prove that $\left(y_{n}\right)_{n=1}^{\infty}$ diverges.

Math 412/512 Midterm

TAKE-HOME PORTION

Due Friday, November 2

GENERAL RULES: You may use your textbook and notes as resources, but no other texts and certainly NO PEOPLE other than yourself.

1) Define $a_{1}=\sqrt{5}$ and $a_{n+1}=\sqrt{4+\sqrt{a_{n}}}$ for all $n \in \mathbb{N}$.
a) Prove that $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above by 3 .
b) Prove that $\left(a_{n}\right)_{n=1}^{\infty}$ is monotonically increasing. Conclude $\left(a_{n}\right)_{n=1}^{\infty}$ converges
2) Let S and T be bounded sets of negative real numbers. Define

$$
S T=\{s t \mid s \in S, t \in T\}
$$

Show that $S T$ is bounded and that $\inf (S T)=\sup (S) \cdot \sup (T)$.
3) a) Consider \mathbb{Z} with the trivial (discrete) metric

$$
d(n, m)= \begin{cases}1 & n \neq m \\ 0 & n=m\end{cases}
$$

for all $n, m \in \mathbb{Z}$. Prove that (\mathbb{Z}, d) is complete.
b) Find an example of a metric space (Y, d) with the following property: Y contains a subset X with $|X|>1$ such that (X, d) is a complete metric space, yet (Y, d) is NOT a complete metric space. Be sure to show that your example satisfies all the given hypotheses.
4) Prove that \mathbb{R} contains uncountably many distinct countable dense subsets.

