Math 451/551 Final

Friday, December 16th

The odd-numbered problems are definitions and theorems meant to aid you in the subsequent even-numbered problem, with the exception of 1 b). Use them wisely.

1. a) Define a metric d on a set X. Alternatively, define the metric space (X, d).
b) State the Heine Borel Theorem.
2. a) For $x, y \in \mathbb{R}$, define

$$
f(x, y)=\frac{|x-y|}{|y|+1}
$$

Prove that f is NOT a metric on \mathbb{R}.
b) Let $S, T \subset \mathbb{R}$ be compact. Show that $S \cup T$ is also compact.
3. Define a dense subset S of the real numbers \mathbb{R}.
4. Prove that \mathbb{R} has infinitely many dense subsets.
5. a) If $f: \mathbb{R} \rightarrow \mathbb{R}$, define what it means for f to be differentiable at a point $a \in \mathbb{R}$. Equivalent statements are acceptable.
b) Define an infinitesimal hyperreal number.
6. a) Prove the power rule: $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for $n \geq 1$ and $x \in \mathbb{R}$.
b) Show that if $\varepsilon, \delta \in{ }^{*} \mathbb{R}$ are infinitesimal, then $\varepsilon+\delta$ is also infinitesimal.
7. a) State the comparison test for infinite series of real numbers with non-negative terms.
b) Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. State the BolzanoWeierstrass Theorem.
8. Do ONE of the following two problems. If you attempt both, I will grade the problem you do WORSE on.
a) Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers and suppose $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ both converge. Show that

$$
\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|
$$

converges.
-OR-
b) Prove that every sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of real numbers has a subsequence that is either monotonically increasing or monotonically decreasing.

