Math 451/551 Final

Tuesday, December 14th

The odd-numbered problems are definitions and theorems meant to aid you in the subsequent even-numbered problem. Use them wisely.

- 1. a) State the Principle of Mathematical Induction.
 - b) Define what it means for a subset S of \mathbb{R} to be dense in \mathbb{R} .

2. a) Let T be a nonempty subset of N and suppose $|T| < \infty$. Prove that there exists an $n \in T$ with $n \ge k$ for all $k \in T$.

b) Prove that $S = \{x + \sqrt{2} \mid x \in \mathbb{Q}\}$ is dense in \mathbb{R} .

3. a) Define a Cauchy sequence in $\mathbb{R}.$

b) State the comparison test for series of real numbers with non-negative terms.

4. a) Prove that if (a_n) and (b_n) are Cauchy sequences of real numbers, then $(a_n + b_n)$ is a Cauchy sequence of real numbers.

b) Suppose $a_n \ge 0$ for all $n \in \mathbb{N}$ and that $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}}$ converges.

- 5. a) State the Heine-Borel Theorem.
 - b) Define a connected subset S of a metric space (X, d).

6. a) Determine whether $\mathbb{Q} \cap [0, 1]$ is a compact subset of $(\mathbb{R}, |\cdot|)$.

b) Prove that the intersection of two connected subsets S and T of $(\mathbb{R}, |\cdot|)$ is connected.

- 7. a) Give the sequential definition of compactness for a subset S of a metric space (X, d).
 - b) State the Mean Value Theorem.

- 8. Do ONE of the following two problems. If you attempt both, I will grade the problem you do WORSE on.
 - a) Let C([0, 1]) denote the collection of all *continuous* functions from [0, 1] to \mathbb{R} and define, for $f, g \in C([0, 1])$,

$$d(f,g) = \max_{x \in [0,1]} \{ |f(x) - g(x)| \}.$$

Then d is a metric on C([0, 1]) (you do not have to prove this). Show that B(0, 1) is not compact, where "0" is the function that is constantly zero.

-OR-

b) Let f be a continuous, real-valued function on [0, 1]. Suppose f is differentiable on (0, 1) f(0) = 0, and that |f'(x)| < 1 for all $x \in (0, 1)$. Prove that $f(x) \leq x$ for all $x \in (0, 1)$.