Math 451/551 Final

Tuesday, December 14th

The odd-numbered problems are definitions and theorems meant to aid you in the subsequent even-numbered problem. Use them wisely.

1. a) State the Principle of Mathematical Induction.
b) Define what it means for a subset S of \mathbb{R} to be dense in \mathbb{R}.
2. a) Let T be a nonempty subset of \mathbb{N} and suppose $|T|<\infty$. Prove that there exists an $n \in T$ with $n \geq k$ for all $k \in T$.
b) Prove that $S=\{x+\sqrt{2} \mid x \in \mathbb{Q}\}$ is dense in \mathbb{R}.
3. a) Define a Cauchy sequence in \mathbb{R}.
b) State the comparison test for series of real numbers with nonnegative terms.
4. a) Prove that if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences of real numbers, then $\left(a_{n}+b_{n}\right)$ is a Cauchy sequence of real numbers.
b) Suppose $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and that $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that $\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{n}}$ converges.
5. a) State the Heine-Borel Theorem.
b) Define a connected subset S of a metric space (X, d).
6. a) Determine whether $\mathbb{Q} \cap[0,1]$ is a compact subset of $(\mathbb{R},|\cdot|)$.
b) Prove that the intersection of two connected subsets S and T of $(\mathbb{R},|\cdot|)$ is connected.
7. a) Give the sequential definition of compactness for a subset S of a metric space (X, d).
b) State the Mean Value Theorem.
8. Do ONE of the following two problems. If you attempt both, I will grade the problem you do WORSE on.
a) Let $C([0,1])$ denote the collection of all continuous functions from $[0,1]$ to \mathbb{R} and define, for $f, g \in C([0,1])$,

$$
d(f, g)=\max _{x \in[0,1]}\{|f(x)-g(x)|\} .
$$

Then d is a metric on $C([0,1])$ (you do not have to prove this). Show that $B(0,1)$ is not compact, where " 0 " is the function that is constantly zero.
-OR-
b) Let f be a continuous, real-valued function on $[0,1]$. Suppose f is differentiable on $(0,1) f(0)=0$, and that $\left|f^{\prime}(x)\right|<1$ for all $x \in(0,1)$. Prove that $f(x) \leq x$ for all $x \in(0,1)$.

