Math 452/552 Problem Set 1

To Be Presented Friday, January 18

1) (5 points) Let (X, d) be a metric space and let $f:(X, d) \rightarrow(\mathbb{R},|\cdot|)$ be continuous. Let

$$
\mathcal{Z}(f)=\{x \in X \mid f(x)=0\}
$$

Prove that $\mathcal{Z}(f)$ is closed.
2) (5 points) Prove that the monotone convergence theorem implies the nested interval property.
3) (10 points) Let $x_{1}=\frac{1}{4}$ and for $n>1$, define $x_{n}=\left(\frac{1}{4}\right)^{x_{n-1}}$. Prove that $\left(x_{n}\right)_{n=1}^{\infty}$ converges.
4) (5 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose for all $x, y \in \mathbb{R}$,

$$
|f(x)-f(y)|<(x-y)^{2}
$$

Show that there exists $c \in \mathbb{R}$ such that $f(x)=c$ for all $x \in \mathbb{R}$, i.e., f is constant.
5) (5 points) Show that if $a_{n}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left(n^{2} a_{n}\right)$ exists, then $\sum_{n=1}^{\infty} a_{n}$ converges.
6) (15 points) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous in the usual metric on both its domain and range. Suppose that for any point $x \in[a, b]$, there is another point $x^{\prime} \in[a, b]$ such that $\left|f\left(x^{\prime}\right)\right| \leq|f(x)| / 2$. Prove that there exists a point $x_{0} \in[a, b]$ where $f\left(x_{0}\right)=0$.
7) (15 points) Let (X, d) be a compact metric space and let $f: X \rightarrow Y \subset X$ satisfy

$$
d(f(x), f(y))=d(x, y)
$$

for all $x, y \in X$. Prove that $Y=X$.
8) (10 points) Explain Conway's base-13 counterexample to the converse of the intermediate value theorem; show that it is nowhere-continuous and satisfies the conclusion to the intermediate value theorem.
9) (5 points) Prove that if $f:[a, b] \rightarrow \mathbb{R}$ satisfies the conclusion of the intermediate value theorem and is increasing, then f must be continuous.
10) (5 points) Show that $f(x)=1 / x^{2}$ is uniformly continuous on $(1, \infty)$.
11) (5 points) Show that if $f:[a . b] \rightarrow \mathbb{R}$ is bounded, then $U(f) \geq L(f)$.
12) (Exercise 7.2.6- 5 points) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is increasing. Prove that f is Riemann-integrable.
13) (5 points) Exercise 7.3.4.
14) (10 points) Exercise 7.3.6.

