Math 452/552 Problem Set 2

To Be Presented Friday, February 1

1) (5 points) (Exercise 7.6.4) Show that the Cantor set has Lebesgue measure zero.
2) (5 points) If C denotes the Cantor set. For any subset $S \subseteq \mathbb{R}$, we define

$$
\chi_{S}(x)= \begin{cases}1 & x \in S \\ 0 & x \notin S\end{cases}
$$

Show that χ_{C} is Riemann integrable on $[0,1]$.
3) (5 points) (Exercise 7.4.1) If f is Riemann integrable on $[a, b]$, show that $|f|$ is Riemann integrable on $[a, b]$ and that

$$
\int_{a}^{b}|f| d x \geq\left|\int_{a}^{b} f d x\right|
$$

4) (5 points each part) Exercise 7.5.8.
5) (5 points) Suppose $f \geq 0$ and continuous on $[a, b]$. If $\int_{a}^{b} f d x=0$, show that $f=0$ identically on $[a, b]$.
6) Let p and q be positive real numbers with $\frac{1}{p}+\frac{1}{q}=1$.
a) (10 points) Prove that if $a, b \geq 0$ are real numbers, then $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$, with equality iff $a^{p}=b^{q}$.
b) (5 points) If $f, g \geq 0$ on $[a, b]$ and

$$
\int_{a}^{b} f^{p} d x=\int_{a}^{b} g^{q} d x=1
$$

show $\int_{a}^{b} f g d x \leq 1$.
c) (10 points) Prove Hölder's Inequality:

$$
\left|\int_{a}^{b} f g d x\right| \leq\left\{\int_{a}^{b}|f|^{p} d x\right\}^{1 / p}\left\{\int_{a}^{b}|g|^{q} d x\right\}^{1 / q}
$$

7) For $1<s<\infty$, define

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

When s is complex, this is known as the Riemann zeta function. We will only consider reals, though. For $x \in \mathbb{R}$, let $[x]$ denote the greatest integer less than or equal to x.
a) (10 points) Prove that $\zeta(s)=s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x$.
b) (5 points) Prove that $\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{x-[x]}{x^{s+1}} d x$.
8) (15 points) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} f(x)\left(x^{n}+x^{n+2}\right) d x
$$

for all $n \in \mathbb{N} \cup\{0\}$. Show that $f=0$ identically on $[0,1]$.
9) (15 points) Let

$$
X=\{f:[0,2 \pi] \rightarrow \mathbb{R} \mid f \text { is continuous and }|f| \leq 1 \forall x \in[0,2 \pi]\}
$$

Define a metric d on X by

$$
d(f, g)=\sqrt{\int_{0}^{2 \pi}(f-g)^{2} d x}
$$

Is (X, d) a compact metric space? Prove your assertion.

