Math 452/552 Problem Set 2

To Be Presented Friday, February 1

1) (5 points) (Exercise 7.6.4) Show that the Cantor set has Lebesgue measure zero.

2) (5 points) If C denotes the Cantor set. For any subset $S \subseteq \mathbb{R}$, we define

$$\chi_S(x) = \begin{cases} 1 & x \in S \\ 0 & x \notin S \end{cases}$$

Show that χ_C is Riemann integrable on [0, 1].

3) (5 points) (Exercise 7.4.1) If f is Riemann integrable on [a, b], show that |f| is Riemann integrable on [a, b] and that

$$\int_{a}^{b} |f| \, dx \ge \left| \int_{a}^{b} f \, dx \right|.$$

4) (5 points each part) Exercise 7.5.8.

5) (5 points) Suppose $f \ge 0$ and continuous on [a, b]. If $\int_a^b f \, dx = 0$, show that f = 0 identically on [a, b].

6) Let p and q be positive real numbers with $\frac{1}{p} + \frac{1}{q} = 1$.

a) (10 points) Prove that if $a, b \ge 0$ are real numbers, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, with equality iff $a^p = b^q$.

b) (5 points) If $f, g \ge 0$ on [a, b] and

$$\int_a^b f^p \, dx = \int_a^b g^q \, dx = 1,$$

show $\int_{a}^{b} fg \, dx \le 1.$

c) (10 points) Prove Hölder's Inequality:

$$\left| \int_{a}^{b} fg \, dx \right| \leq \left\{ \int_{a}^{b} |f|^{p} \, dx \right\}^{1/p} \left\{ \int_{a}^{b} |g|^{q} \, dx \right\}^{1/q}.$$

7) For $1 < s < \infty$, define

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

When s is complex, this is known as the *Riemann zeta function*. We will only consider reals, though. For $x \in \mathbb{R}$, let [x] denote the greatest integer less than or equal to x.

a) (10 points) Prove that
$$\zeta(s) = s \int_1^\infty \frac{[x]}{x^{s+1}} dx.$$

b) (5 points) Prove that
$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx$$
.

8) (15 points) Suppose that $f: [0,1] \to \mathbb{R}$ is continuous and

$$\int_0^1 f(x) \, dx = \int_0^1 f(x)(x^n + x^{n+2}) \, dx$$

for all $n \in \mathbb{N} \cup \{0\}$. Show that f = 0 identically on [0, 1].

9) (15 points) Let

 $X = \{f : [0, 2\pi] \to \mathbb{R} \mid f \text{ is continuous and } |f| \le 1 \ \forall x \in [0, 2\pi] \}.$

Define a metric d on X by

$$d(f,g) = \sqrt{\int_0^{2\pi} (f-g)^2 dx}.$$

Is (X, d) a compact metric space? Prove your assertion.