Math 452/552 Problem Set 2
To Be Presented Friday, February 1

1) (5 points) (Exercise 7.6.4) Show that the Cantor set has Lebesgue measure
zero.

2) (5 points) If C' denotes the Cantor set. For any subset S C R, we define
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Show that x¢ is Riemann integrable on [0, 1].

3) (5 points) (Exercise 7.4.1) If f is Riemann integrable on [a,b], show that
|f] is Riemann integrable on [a, b] and that
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4) (5 points each part) Exercise 7.5.8.
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5) (5 points) Suppose f > 0 and continuous on [a, b]. If/ f dx =0, show
that f = 0 identically on [a, b]. ’
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6) Let p and ¢ be positive real numbers with — + — = 1.
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a) (10 points) Prove that if a,b > 0 are real numbers, then ab < — 4+ —,
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with equality iff a” = b9.

b) (5 points) If f,¢g > 0 on [a,b] and
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ShOW/ fgdx <1.



¢) (10 points) Prove Holder’s Inequality:
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7) For 1 < s < oo, define
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When s is complex, this is known as the Riemann zeta function. We will

only consider reals, though. For x € R, let [x] denote the greatest integer
less than or equal to z.

a) (10 points) Prove that ((s) = S/OO &l dzx.
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b) (5 points) Prove that ((s) = o 8/00 z — la] dx.
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8) (15 points) Suppose that f : [0, 1] — R is continuous and
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for all n € NU{0}. Show that f = 0 identically on [0, 1].
9) (15 points) Let
X ={f:]0,2n] — R | f is continuous and |f| < 1 Vx € [0, 27]}.

Define a metric d on X by

A(f.g) = \/ 0 (- 9 de.

Is (X, d) a compact metric space? Prove your assertion.




