Math 452/552 Problem Set 5

To Be Presented Wednesday, April 17

1) Any 10-point problem no one did from Rudin, Chapter 9 on the last homework: still 10 points each! These are \#'s $9,12,14,15,17,18,21-23$, 26-29
2) Spivak problems 4-2, 4-3, 4-5, 4-11, 4-13, 4-14, 4-15: 5 points each
3) Spivak problems $3-37(\mathrm{~b}), 4-1,4-5,4-6,4-7,4-8,4-10,4-12,4-17,4-18$, 4-25, 4-27, 4-30, 4-31: 10 points each
4) Spivak problems $3-38,4-19$ and 4-20, 4-28, 4-32: 15 points each (4-19 is all-or-nothing)
5) (15 points) Let $\Gamma:=\left\{(x, y, z) \in \mathbb{R}^{3}: e^{x y}=x, x^{2}+y^{2}+z^{2}=10\right\}$. The Implicit Function Theorem ensures that Γ is a curve in some neighborhood of the point

$$
p=\left(e, \frac{1}{e}, \sqrt{10-e^{2}-\frac{1}{e^{2}}}\right) .
$$

That is, there is an open interval $I \subset \mathbb{R}$ and a C^{1} (continuously differentiable) mapping $\gamma: I \rightarrow \Gamma$ such that $\gamma(0)=p$. Find a unit vector v such that $v= \pm \frac{\gamma^{\prime}(0)}{\left\|\gamma^{\prime}(0)\right\|_{2}}$.
6) (15 points) Let n be an integer greater than 1 and consider the following statement: if ω is a differential 2-form on \mathbb{R}^{n} with the property that $\omega \wedge \lambda=0$ for every differential 1-form λ, then ω must be the zero form. For what n is the above statement true? For what n is it false? Prove your answers.
7) (15 points) Let Ω be an open set in \mathbb{R}^{2}. Let u be a real-valued function on Ω. Suppose that for each point $a \in \Omega$ the partial derivatives $u_{x}(a)$ and $u_{y}(a)$ exist and are equal to zero.
a) Prove that u is locally constant, i.e., for every point in Ω there is a neighborhood on which u is a constant function.
b) Prove that if Ω is connected, then u is a constant function.

