Math 452/552 Practice Problems for the Final

1) Let $g:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function and define functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\int_{0}^{1} g(x, y) y^{n} d y
$$

for $x \in[0,1]$ and $n \in \mathbb{N}$. Show that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ has a subsequence which converges uniformly on $[0,1]$.
2) Consider the 1-form F defined on $\mathbb{R}^{2} \backslash\{0\}$ by

$$
F=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

Evaluate $\int_{\partial C} F$ where C is the unit square $[-1,1] \times[-1,1]$ in \mathbb{R}^{2}, positively oriented.
3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the following property: for every positive integer n and every $x, y \in \mathbb{R}$ such that both $|x|+|y|>n^{2}$ and $|x-y|<1 / n^{2}$, we have $|f(x)-f(y)|<1 / n$. Show that f is uniformly continuous.
4) Let $f:[0,1] \rightarrow \mathbb{R}^{n}$ be a continuous function. Show that

$$
\left\|\int_{0}^{1} f(t) d t\right\|_{2} \leq \int_{0}^{1}\|f(t)\|_{2} d t
$$

5) Let $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be continuously differentiable and assume that $D f(x, y)$ is invertible for all $(x, y) \in \mathbb{R}^{2}$. Assume moreover that, for any compact set $K \subset \mathbb{R}^{2}, f^{-1}(K)$ is compact. Prove that f is onto.
6) Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
g(x, y)=\left(x^{2}+y^{2}-\left|x^{2}-y^{2}\right|, x^{2}+y^{2}+\left|x^{2}-y^{2}\right|\right)
$$

a) Determine those points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ where $D g\left(x_{0}, y_{0}\right)$ exists and where it does not exist. In both cases, justify your answer. Be sure to analyze $\left(x_{0}, y_{0}\right)=(0,0)$.
b) Find those points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ where g locally has a differentiable inverse and where it does not. In both cases, justify your answer.
7) Consider the surface S in \mathbb{R}^{3} consisting of all points (x, y, z) such that $x^{2}+y^{2}+z^{2}=1$ and $x \geq 0$, and choose an orientation for S. Calculate the integral $\int_{S} \omega$ where the 2-form ω is defined by

$$
\omega(x, y, z)=x d x \wedge d y+y d y \wedge d z+z d z \wedge d x
$$

for $(x, y, z) \in \mathbb{R}^{3}$.

