Math 452/552 Practice Problems for the Final

1) Let $g: [0,1] \times [0,1] \to \mathbb{R}$ be a continuous function and define functions $f_n: [0,1] \to \mathbb{R}$ by

$$f_n(x) = \int_0^1 g(x, y) y^n \, dy$$

for $x \in [0, 1]$ and $n \in \mathbb{N}$. Show that the sequence $(f_n)_{n=1}^{\infty}$ has a subsequence which converges uniformly on [0, 1].

2) Consider the 1-form F defined on $\mathbb{R}^2 \setminus \{0\}$ by

$$F = \frac{xdy - ydx}{x^2 + y^2}.$$

Evaluate $\int_{\partial C} F$ where C is the unit square $[-1,1] \times [-1,1]$ in \mathbb{R}^2 , positively oriented.

3) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with the following property: for every positive integer n and every $x, y \in \mathbb{R}$ such that both $|x| + |y| > n^2$ and $|x - y| < 1/n^2$, we have |f(x) - f(y)| < 1/n. Show that f is uniformly continuous.

4) Let $f:[0,1] \to \mathbb{R}^n$ be a continuous function. Show that

$$\left\|\int_0^1 f(t) \ dt\right\|_2 \le \int_0^1 \|f(t)\|_2 \ dt.$$

5) Let $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ be continuously differentiable and assume that Df(x, y) is invertible for all $(x, y) \in \mathbb{R}^2$. Assume moreover that, for any compact set $K \subset \mathbb{R}^2$, $f^{-1}(K)$ is compact. Prove that f is onto.

6) Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$g(x,y) = (x^2 + y^2 - |x^2 - y^2|, x^2 + y^2 + |x^2 - y^2|).$$

a) Determine those points $(x_0, y_0) \in \mathbb{R}^2$ where $Dg(x_0, y_0)$ exists and where it does not exist. In both cases, justify your answer. Be sure to analyze $(x_0, y_0) = (0, 0)$. b) Find those points $(x_0, y_0) \in \mathbb{R}^2$ where g locally has a differentiable inverse and where it does not. In both cases, justify your answer.

7) Consider the surface S in \mathbb{R}^3 consisting of all points (x, y, z) such that $x^2 + y^2 + z^2 = 1$ and $x \ge 0$, and choose an orientation for S. Calculate the integral $\int_S \omega$ where the 2-form ω is defined by

$$\omega(x, y, z) = xdx \wedge dy + ydy \wedge dz + zdz \wedge dx$$

for $(x, y, z) \in \mathbb{R}^3$.