Math 115 Exam 1

1) (15 points) Find all horizontal and vertical asymptotes for the function

$$
f(x)=\frac{61 x^{2}-244}{x^{2}+3 x-10} .
$$

2) Let $f(x)=\frac{2 x-3}{5 x-4}$ for $x \neq 4 / 5$.
a) (6 points) Using the definition of the derivative, express the slope of the tangent line to the graph of f at $x=2$ as a limit BUT DO NOT COMPUTE THE LIMIT.
b) (10 points) Obtain the equation of the tangent line at $x=2$ to the graph of f, using any method at your disposal other than merely your calculator.
3) Consider the function

$$
f(x)= \begin{cases}-6 x m+12 & x>3 \\ -6 & x=3 \\ x^{2} m-15 & x<3\end{cases}
$$

a) (12 points) Find all values of m (if any exist) such that f has a limit at $x=3$.
b) (18 points) Find all values of m (if any exist) that make f continuous at $x=3$.
4) (12 points) Show that the function $f(x)=\cos (\pi x)-2 x$ has a zero in the interval $[-1,1]$.
5) Evaluate the following limits.
a) (5 points) $\lim _{x \rightarrow 1} \frac{3 x-6}{|x-2|}$
b) (10 points) $\lim _{x \rightarrow 2^{+}} \sin (x-2) \cos \left(\frac{7 x}{x-2}\right)$
c) $(12$ points $) \lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-x+1}-\sqrt{x^{2}+1}\right)$

