Name:

Math 115 Exam 1

February 6, 2014

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) True/False. If the sentence is false, correct the error.
a) (2 points) If $\lim _{x \rightarrow a^{+}} f(x)=f(a)$, then f is continuous at $x=a$.
b) (2 points) If the limit exists, the equation of the tangent line to the graph of f at $x=a$ is given by $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
c) (2 points) If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a}(f(x)+g(x))=$ $L+M$.
d) (2 points) For all f and g, if $f^{\prime}(x)$ and $g^{\prime}(x)$ exist, then $(f \cdot g)^{\prime}(x)=$ $f^{\prime}(x) \cdot g^{\prime}(x)$.
e) (2 points) The function $f(x)=\frac{x^{2}-3 x}{x-3}$ has a vertical asymptote at $x=3$.
2) Find the equation for the tangent line to the given function at the indicated point, using any method at your disposal other than just your calculator.
a) (12 points) $f(x)=\left(x^{2}-2 x+1\right)\left(x^{2}-5 x+6\right), a=0$.
b) (14 points) $g(x)=\frac{2 x-1}{5-3 x}, a=4$.
3) Consider the function

$$
f(x)= \begin{cases}3 x c^{2}-12, & x>4 \\ 0, & x=4 \\ 2 x c^{2}+x^{2} c+8, & x<4\end{cases}
$$

a) (12 points) Find all values of c (if any exist) such that f has a limit at $x=4$.
b) (12 points) Find all values of c (if any exist) that make f continuous at $x=4$.
4) (12 points) Show that the function $f(x)=\tan (x)+x-1$ has a zero in the interval $[-\pi / 4, \pi / 4]$.
5) Evaluate the following limits.
a) (6 points) $\lim _{x \rightarrow-\pi / 6} \frac{\cos (x)}{|\sin (2 x)|}$
b) (10 points) $\lim _{x \rightarrow 1^{+}}(x-1)^{2} \sin \left(\frac{1}{x-1}\right)$
c) $(12$ points $) \lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}+7 x-8}-\sqrt{16 x^{2}-5 x+22}\right)$

BONUS: (10 points) For all differentiable f, find the value of

$$
\lim _{h \rightarrow 0} \frac{f(a x+a h)-f(a x)}{h},
$$

where a is a fixed number. Your answer should be symbolic with perhaps one exception on a. You will get zero points for finding an answer for your favorite choice of f.

