Name:

Math 115 Exam 1

January 24, 2019

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless indicated, DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.
4. If you have a question, raise your hand or come up and ask me.
1) (8 points) Draw an example of a function f such that all of the following hold:
(i) $\lim _{x \rightarrow-1} f(x)$ exists but is not equal to $f(-1)$,
(ii) $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$ both exist but are not equal, and
(iii) $\lim _{x \rightarrow 1^{-}} f(x)$ exists but $\lim _{x \rightarrow 1^{+}} f(x)$ does not exist.
2) (15 points) Find all vertical and horizontal asymptotes for the function

$$
f(x)=\frac{-7 x^{2}+7 x+140}{3 x^{2}-39 x-204} .
$$

3) Consider the function

$$
f(x)= \begin{cases}c^{2} x-x^{5}, & x<2 \\ 18, & x=2 \\ c^{2}+c x+3, & x>2\end{cases}
$$

a) (12 points) Find all values of c (if any exist) such that f has a limit at $x=2$.
b) (8 points) Find all values of c (if any exist) that make f continuous at $x=2$.
4) Evaluate the following limits:
a) (5 points) $\lim _{x \rightarrow-1} \frac{2 x^{3}-1}{x^{2}+1}$
b) $\left(12\right.$ points) $\lim _{x \rightarrow \infty}\left(\sqrt{25 x^{2}-16 x+21}-\sqrt{25 x^{2}+43 x-98}\right)$

BONUS: (10 points) Compute $\lim _{x \rightarrow 1} \frac{\sqrt[5]{x}-1}{\sqrt{x}-1}$.

