Name:

Math 115 Exam 3

December 5th, 2013

1) The square of the distance from the center of an elliptical racing track to a car driving on the track is given in feet by $h(t)=20+10 \cos ^{2}(\pi t)$ where $t \geq 0$ is in minutes.
a) (12 points) Determine where h is increasing or decreasing on the interval $[1 / 4,3 / 4]$.
b) (6 points) Find the absolute maximum and minimum for h on the interval [1/4, 3/4].
2) Sasquatch's favorite drinking cup has the shape of a cylinder with no top. Sasquatch is planning to go into business by mass-marketing such cups with his partner, Bigfoot. He wants the cups to contain a fixed volume of 9000π cm^{3}. The insulated material for the sides costs more, at .03 cents per cm^{2}, than the base, which costs .01 cents per cm^{2}. The formula for the surface area of a cylinder with no top of radius r and height h is $\pi r^{2}+2 \pi r h$.
a) (6 points) Establish an equation in one variable for the cost of Sasquatch's cup.
b) (12 points) Find the height and radius of a cup that minimizes the cost for Sasquatch to produce. Be sure to show your answer is actually a minimum.
3) a) (10 points) Show that there is exactly one cube whose volume is equal to 3 minus its height.
b) (6 points) Starting with $x_{1}=1$, apply Newton's method to find x_{3}, thus approximating the sidelength of the cube. You may record your answer as a decimal to four places.
4) Consider the curves $f(x)=\sqrt{x^{2}+1}$ and $g(x)=\sqrt{x+1}$.
a) (6 points) Find the intersection points of the curves.
b) (8 points) Set up an integral for the volume obtained by revolving the region bounded by the two curves about the y-axis BUT DO NOT EVALUATE THE INTEGRAL.
5) Evaluate the following integrals.
a) $(6$ points $) \int\left(8 x-13 x^{7}+1\right) d x$
b) (8 points) $\int_{-2}^{3} \frac{x}{\left(x^{2}+1\right)^{2}} d x$
c) (10 points) $\int_{0}^{\pi / 6} \frac{1}{\sin (x)+1} d x$
