Name:

Math 115 Exam 3

March 14, 2019

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless indicated, DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.
4. If you have a question, raise your hand or come up and ask me.
1) (8 points) Draw the graph of a SINGLE function f that is defined on the interval $[-3,5]$ such that ALL of the following conditions are satisfied:
(i) f has an absolute minimum at $x=-2$,
(ii) $f^{\prime}(0)=0$ but f has neither a local maximum nor a local minimum at $x=0$, and
(iii) f has both a local and an absolute maximum at $x=\pi$.
2) (17 points) The position of a Higgs Boson in CERN's Large Hadron Collider is given in meters by $s(t)=2 t^{3}-9 t^{2}-60 t+\pi$ where $t \geq 0$ is in seconds.
a) (9 points) Locate all critical points of $s(t)$.
b) (6 points) Find the intervals where the boson is moving forward (increasing) or moving backward (decreasing).
c) (2 points) Determine the local maxima and minima (if any exist) of s.
3) (18 points) Find the equation of the tangent line to the graph of

$$
x y^{3}-y x^{3}=\sin (\pi(x-y))
$$ at the point (π, π).

4) (17 points) Find the absolute maximum and minimum for the function $f(x)=\sin \left(x^{2}\right)+\cos \left(x^{2}\right)$ on the interval $[-\sqrt{\pi / 6}, \sqrt{2 \pi / 3}]$.

BONUS: (10 points) Show that $\tan (x)>x$ for all x in the interval $[\pi / 4, \pi / 2)$. A picture of the graph from your calculator will get you zero points.

