Name:

Math 115 Exam 4

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless indicated, DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.
4. If you have a question, raise your hand or come up and ask me.
1) (15 points) Let $f(x)=\frac{1}{x^{2}}-\frac{1}{x^{4}}$. Determine all inflection points and intervals of concavity for f.
2) Compute the following integrals:
a) (6 points) $\int x^{7 / 2}-4 \sin (x) d x$
b) (8 points) $\int_{-8}^{8} \sqrt{64-x^{2}} d x$
3) Let $p(x)=7 x^{9}+5 x^{3}+6 x+11$
a) (5 points) Using the Intermediate Value Theorem, show that there is a real number c with $p(c)=0$.
b) (8 points) Show that there cannot be more than one real number c with $p(c)=0$.
4) You have an isosceles triangle in front of you. Label the base as b and the other sides as x.

Suppose the perimeter of the triangle is fixed at 60 mm .
a) (4 points) Find a formula for h in terms of b and x.
b) (5 points) Find a one-variable formula for the area of the triangle.
c) (9 points) Find the maximum possible area of the triangle. (Hint: maximize the square of the area instead.)

BONUS: (10 points) Compute

$$
\lim _{n \rightarrow \infty}\left(\frac{8}{n} \sum_{i=1}^{n} \sqrt{64-\frac{64 i^{2}}{n^{2}}}\right)
$$

The limit exists, so don't waste your time telling me that it doesn't

