Math 115 Final

December 21st, 2011

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) Compute the derivatives of the following functions.
a) (4 points) $f(x)=15 x^{7} \tan (x)$
b) (6 points) $g(x)=\frac{4 x-8}{12 x+3}$
c) (8 points) $h(x)=\cos ^{2}(24 x)$
2) (8 points) Find the equation of the tangent line to the graph of

$$
f(x)=6 x^{5}-18 x^{3}-45
$$ at the point $(2,3)$.

3) Consider the function $f(x)=2 x^{4}-12 x^{2}+92$.
a) (10 points) Find all local maxima, local minima, and intervals of increase/decrease for f.
b) (10 points) Determine the intervals of concavity and inflection points (if any exist) for f.
4) Evaluate the following integrals.
a) (5 points) $\int\left(-42 x^{5}+6 x^{7}\right) d x$
b) (7 points) $\int_{-\pi / 6}^{\pi / 6} \frac{\sin (x)}{\sqrt{16-14 \cos (x)}} d x$
c) (11 points) $\int_{0}^{1} x^{4} \sqrt{1-x^{10}} d x$
5) Find the value of the limits, if they exist.
a) $\left(4\right.$ points) $\lim _{x \rightarrow 9} \frac{\sqrt{13-x}-2}{x-7}$
b) $\left(9\right.$ points) $\lim _{x \rightarrow-4} \frac{\left|x^{2}+4 x\right|}{x+4}$
c) (11 points) $\lim _{x \rightarrow 0} \frac{\tan ^{2}(8 x)}{x^{2}}$
6) a) (3 points) Define what it means for a function f to be continuous at a point $x=a$.
b) (11 points) Find all values of k (if any exist) that make the function

$$
f(x)= \begin{cases}k x^{2}-4 x & x>3 \\ x-6 k x & x<3 \\ 8 & x=3\end{cases}
$$

continuous at $x=3$. Be sure to show your work and be sure that your work is in accord with the definition provided in part a)!
7) Let $f(x)=x^{11}+14 x^{7}+8 x-19$.
a) (5 points) Show that f has a real zero.
b) (9 points) Show that f has only one such zero.
c) (7 points) Starting with $x_{1}=1$, apply Newton's method to find x_{3}. You may leave your answer in unsimplified form.
8) A paper cup has the shape of a right circular cone with a radius of 6 cm at the top and a height of 24 cm . Water pours into the cup at a rate of 3 cubic centimeters per second. Note that the volume of such a cone is $\frac{1}{3} \pi r^{2} h$.
a) (5 points) Draw a picture representing the above scenario, labeling your variables.
b) (7 points) Find an equation in one variable for the volume of the water in the cup. (Hint: similarity)
c) (7 points) How fast is the water level rising when the water in the cup is 4 cm high?
9) Consider the region bounded by $y=\sqrt{x-6}$ by $y=(x-6)^{2 / 3}$ from $x=6$ to $x=7$.
a) (3 points) Draw a picture of the region.
b) (5 points) Find an integral representing the volume obtained by revolving the region about the x-axis
c) (7 points) Compute the volume of the solid obtained in part b).
10) A rectangular poster with a picture of Sasquatch on it is to have an area of 154 square inches with one-inch margins at the bottom and sides and two-inch margins at the top. Sasquatch's picture must be inside the margins.
a) (4 points) Draw a picture that reflects this scenario.
b) (7 points) Establish an equation in one variable for the area of the poster on which you can put a picture of Sasquatch.
c) (7 points) Find the dimensions of the poster with the most area for a picture of Sasquatch satisfying the given conditions.

