Math 115 Final

December 18th, 2013

1) Compute the derivatives of the following functions.
a) (4 points) $f(x)=14 x^{3} \sin (x)$
b) $\left(6\right.$ points) $g(x)=\frac{8-5 x}{15 x+9}$
c) (8 points) $h(x)=\tan ^{2}(11 x)$
2) (11 points) Find the equation of the tangent line to the graph of

$$
\cos (y)-x^{2} y+\pi / 2=0
$$

at the point $(1, \pi / 2)$.
3) Consider the function $f(x)=x(x-6)^{3}$.
a) (10 points) Find all local maxima, local minima, and intervals of increase/decrease for f.
b) (10 points) Determine the intervals of concavity and inflection points (if any exist) for f.
4) Evaluate the following integrals.
a) (5 points) $\int\left(-5 x^{2}+10 x^{9}\right) d x$
b) (7 points) $\int_{0}^{2} \frac{x^{3}}{\sqrt{x^{4}+1}} d x$
c) (11 points) $\int_{\pi / 6}^{\pi / 2} \cos ^{3}(x) \sin ^{2}(x) d x$
5) Find the value of the limits, if they exist.
a) (4 points) $\lim _{x \rightarrow \pi / 4} \frac{\sin (x)}{10 x}$
b) (9 points) $\lim _{x \rightarrow 0} \frac{\tan (x)+3 x}{7 x}$
c) (11 points) $\lim _{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x+3})$
6) a) (3 points) Define what it means for a function f to be continuous at a point $x=a$.
b) (10 points) Find all values of k (if any exist) that make the function

$$
f(x)= \begin{cases}k^{2}+k x & x>5 \\ \frac{20 k}{x}+6 & x<5 \\ -6 & x=5\end{cases}
$$

continuous at $x=5$. Be sure to show your work and be sure that your work is in accord with the definition provided in part a)!
7) Let $f(x)=6 x^{9}+12 x^{5}+3 x-24$.
a) (5 points) Show that f has a real zero (root).
b) (6 points) Show that f has only one such zero (root).
c) (7 points) Starting with $x_{1}=1$, apply Newton's method to find x_{3}. You may leave your answer in unsimplified form.
8) Consider the region \mathcal{R} bounded by the curves $y=2 x-x^{2}+3$ and $y=3-x$.
a) (5 points) Find the intersection points of the two curves.
b) (4 points) Set up an integral representing the area of \mathcal{R} BUT DO NOT EVALUATE THE INTEGRAL.
c) (6 points) Set up an integral for the volume obtained by revolving \mathcal{R} about the x-axis BUT DO NOT EVALUATE THE INTEGRAL.
9) Sasquatch's favorite drinking cup has the shape of a cylinder with no top. Sasquatch is planning to go into business by mass-marketing such cups with his partner, Bigfoot. He wants the cups to contain a fixed volume of 9000π cm^{3}. The insulated material for the sides costs more, at .03 cents per cm^{2}, than the base, which costs .01 cents per cm^{2}. The formula for the surface area of a cylinder with no top of radius r and height h is $\pi r^{2}+2 \pi r h$ where πr^{2} is the area of the base and $2 \pi r h$ is the area of the sides.
a) (5 points) Establish an equation in one variable for the cost of Sasquatch's cup.
b) (12 points) Find the height and radius of a cup that minimizes the cost for Sasquatch to produce. Be sure to show your answer is actually a minimum.
10) A basketball court is 50 feet from side-to-side and 94 feet from end-toend. Vice-President Joe Biden is sitting 10 feet away from one of the sides level with half-court watching President Barack Obama fast-break from end-to-end down the dead-center of the court. President Obama runs at a rate of $7 \mathrm{ft} / \mathrm{s}$ and starts at one end of the court.
a) (5 points) Draw a picture representing the above scenario, labeling your variables.
b) (5 points) Find an equation in relating the angle between the president and the vice-president to the distance between them.
c) (11 points) How fast is the angle between the president and the vicepresident changing 5 seconds after President Obama begins running?

