Math 115 Fall 13 Final Answers

1) a)
$$42x^2 \sin(x) + 14x^3 \cos(x)$$

b)
$$-\frac{165}{(9+15x)^2}$$

c) $22\tan(11x)\sec^2(11x)$
2) $-\frac{\pi}{2}(x-1) = y - \frac{\pi}{2}$

3) a) Increasing on (3/2, 6) and $(6, \infty)$; decreasing on $(-\infty, 3/2)$. Local min x = 3/2; no local max.

b) Concave up on $(-\infty, 3)$, $(6, \infty)$; concave down on (3, 6). Inflection points: x = 3, 6.

4) a)
$$-\frac{5x^3}{3} + x^{10} + C$$

b) $\frac{\sqrt{17} - 1}{2}$
c) $47/480$
5) a) $\frac{\sqrt{2}}{5\pi}$
b) $4/7$
c) 0
6) a) $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$.
b) $k = -3$.

7) a) We have that f(0) = -24 < 0 and that f(2) = 3438 > 0, so since f is continuous, by the intermediate value theorem, f has a zero in (0, 2).

b) Taking the derivative, $f'(x) = 54x^8 + 60x^4 + 3 \ge 3 > 0$, so f is always increasing and therefore has only one zero.

c) Approximately 1.0239.

8) a)
$$x = 0$$
 and $x = 2$.
b) $\int_0^3 (2x - x^2 + 3) - (3 - x) dx$
c) $\pi \int_0^3 (2x - x^2 + 3)^2 - (3 - x)^2 dx$
9) a) $C(r) = .01\pi r^2 + \frac{540\pi}{r}$.

b) r = 30, h = 10. By the second derivative test, since $C''(r) = .02\pi + \frac{1080\pi}{r^3} > 0$ for all r > 0, this is a minimum.

10) a) No, thanks.

b)
$$\tan(\theta) = \frac{x}{35}$$
.