Winter 2010 Exam 3
1)

$$
\begin{aligned}
& \int_{1}^{3} 4 x^{3}+12 x \\
= & \left.\left(x^{4}+x\right)\right|_{1} ^{3} \\
= & 84-2=82
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int \tan (x) \sec ^{2}(x) d x \\
& =\frac{\tan ^{2}(x)}{2}+C
\end{aligned}
$$

(technically, there is a different c for every interval of length π where tangent has no discontinuities)
c)

$$
\begin{aligned}
& \text { Let } u=2+x \quad, x=u-2 \\
& d u=d x \\
& u(-1)=1 \\
& u(2)=4 \\
& \int_{-1}^{2} \frac{x^{2}+1}{\sqrt{2+x}} d x=\int_{1}^{4} \frac{(v-2)^{2}+1}{\sqrt{v}} d u \\
&=\int_{1}^{4} \frac{v^{2}-4 u+5}{\sqrt{u}} d u \\
&=\int_{1}^{u / 2} u^{3 / 4 u^{12}+5 u^{-1 / 2}} d u \\
&=\left.\left(\frac{2 u}{5}-\frac{8 u^{3 / 2}}{3}+10 u^{1 / 2}\right)\right|_{1} ^{4} \\
&=\frac{56}{15}
\end{aligned}
$$

2)

intersection af $x=\pi / 4$

$$
\begin{aligned}
A & =\int_{0}^{\pi / 4}(\cos (x)-\sin (x)) d x \\
& =\left.(\sin (x)+\cos (x))\right|_{0} ^{\pi / 4} \\
& =\sqrt{2}-1
\end{aligned}
$$

3)

By similarity,

$$
\begin{aligned}
& \frac{12}{12-y}=\frac{6}{x} \\
& x=\frac{1}{2}(12-y) \\
& A=x y=\frac{1}{2}\left(12 y-y^{2}\right) \\
& A^{\prime}(y)=\frac{1}{2}(12-2 y) \\
& O=A^{\prime}(y)=\frac{1}{2}(12-2 y)=6-y \\
& y=6
\end{aligned}
$$

If $y=6, x=\frac{1}{2}(12-6)$

$$
=3
$$

Note $A^{\prime \prime}(y)=-1<0$,
so we hove a local max by the second derivative test.
4)
a) $f(0)=\cos (0)=120$

$$
f(-1)=\cos (-\pi)-18=-19<0
$$

So by the intermediate value theorem, there is a zero in the interval

$$
[-1,0]
$$

b) Suppose f had two zeros x_{1} and x_{2} with $x_{1}<x_{2}$. Then by the Mean Value Theorem, there is a point c in $\left[x_{1}, x_{2}\right]$ with

$$
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=0
$$

But

$$
\begin{aligned}
f^{\prime}(x) & =-\pi \sin (\pi x)+18 x^{2}+12 \\
& \geq 12-\pi>0
\end{aligned}
$$

so f^{\prime} can's equal zero, and So we cant have two zeros x_{1} and x_{2}.
C)

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(\mu_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =-\frac{1}{2}-\frac{f\left(-/_{2}\right)}{f^{\prime}(-1 / 2)} \\
& =-\frac{1}{2}+\frac{27}{4\left(\frac{33}{2}+\pi\right)} \\
x_{3} & =x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& =-\frac{1}{2}+\frac{27}{4(33 / 2+\pi)}-\frac{f\left(-\frac{1}{2}+\frac{27}{4\left(\frac{33}{2}+\pi\right)}\right)}{f^{\prime}\left(-\frac{1}{2}+\frac{27}{4\left(\frac{33}{2}+\pi\right)}\right)} \\
\approx & -.0832728
\end{aligned}
$$

