Things You Should Know For the Second Exam

Exam covers 1.8, 2.1-2.8, 3.1, 3.3-3.5

1) The Intermediate Value Theorem: the statement and how to the theorem to show a function has a zero.

2) Differentiation

- The definition of the derivative, in both its forms.
- The geometric interpretation of the derivative as the slope of the tangent line
- The equation of the tangent line: $f^{\prime}(a)(x-a)=y-f(a)$
- The interpretation of the derivative as velocity, the second derivative as acceleration, and the third derivative as "jerk."
- The product rule $(f(x) g(x))^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$ and how to use it
- The chain rule $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$ and how to use it
- The quotient rule $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$ and how to use it (if you want to)
- The trig derivatives

$$
\begin{aligned}
& \frac{d}{d x}(\sin (x))=\cos (x) \quad \frac{d}{d x}(\tan (x))=\sec ^{2}(x) \quad \frac{d}{d x}(\sec (x))=\sec (x) \tan (x) \\
& \frac{d}{d x}(\cos (x))=-\sin (x) \quad \frac{d}{d x}(\cot (x))=-\csc ^{2}(x) \quad \frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)
\end{aligned}
$$

In particular, remember that there is a negative sign accompanying the "co" derivatives.

- Implicit differentiation
- how to do it
- how to find the tangent line to an equation
- related rates: every one is implicit differentiation, usually with respect to time!
* draw a picture;
* label the variables and identify what you're looking for and what you're given;
* find an equation that relates all the quantities, implicitly differentiate it, THEN plug in the numbers;
* solve!
* some things to keep in mind: the pythagorean theorem, similar triangles, the definitions of trigonometric functions, the volumes of a cone and sphere.
- Maximum/minimum values of a function.
- the difference between an absolute maximum (or absolute minimum) and a local maximum (or local minimum) for a function
- a continuous function on a closed interval $[a, b]$ attains its absolute maximum and minimum values
* to find the maximum and minimum, calculate all points in $[a, b]$ where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist (i.e. the critical numbers);
* plug all these points and the endpoints $x=a$ and $x=b$ back into the ORIGINAL FUNCTION $f(x)$; the biggest value of f is the maximum and the smallest is the minimum,
- Fermat's theorem: if f has a local maximum or minimum at $x=a$, then either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
- Intervals of increase/decrease for a function f
- find all points where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist;
- plot these points on a number line- this determines a collection of open intervals;
- take points in the open intervals and plug the into the DERIVATIVE $f^{\prime}(x)$. A positive value for $f^{\prime}(x)$ means f is increasing on that interval, a negative value means f is decreasing;
- use the intervals of increase/decrease to determine whether a function has a local maximum, minimum, or neither (the first derivative test)
- The second derivative test: if $f^{\prime}(c)=0$, then
- $f^{\prime \prime}(c)>0$ means f has a local minimum at $x=c$;
- $f^{\prime \prime}(c)<0$ means f has a local maximum at $x=c$;
- $f^{\prime \prime}(c)=0$ means the test fails and you know nothing.
- Intervals of concavity for a function f
- find all points where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist;
- plot these points on a number line- this determines a collection of open intervals;
- take points in the open intervals and plug the into the SECOND DERIVATIVE $f^{\prime \prime}(x)$. A positive value for $f^{\prime \prime}(x)$ means f is concave up on that interval, a negative value means f is concave down;
- use the intervals of concavity to determine whether a function has an inflection point

3) Limits: the identity $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ and how to use it.
4) Any and all algebra and trigonometry that you have ever learned (minus some of the weirder trig identities).
