Things You Should Know For the Third Exam

Exam covers 3.2, 3.7-3.9, 4.1-4.5, 5.1

1) The Mean Value Theorem: the statement and how to use the theorem to show a function has exactly one zero.
2) Antiderivatives (same as indefinite integrals)

- How to compute them
- Any two antiderivatives differ by a constant

3) Newton's Method: how to use it, when it fails.
4) Optimization problems

- Draw a picture and label it
- Determine an equation in one variable for the quantity you want to optimize
- Take the derivative of the equation, set it equal to zero
- If necessary, use either the first or second derivative tests to check that your answer actually satisfies the required properties

5) Integration

- The definition of a definite integral

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{b-a}{n} f\left(a+\frac{i(b-a)}{n}\right)
$$

provided the limit exists!

- How to use an integral to find the area between two curves, especially if one of those curves is the x-axis
- find all points where the curves intersect by setting them equal to eachother
- determine which function is bigger between two consecutive points where they are equal and integrate the bigger one minus the smaller one over those points
- add all the answers to get the area
- Properties of integrals. The first two hold for indefinite integrals as well.

1. $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
2. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ if "c" is a constant
3. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ if $a \leq c \leq b$
4. $\int_{a}^{a} f(x) d x=0$
5. if $f \leq g$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

- The Fundamental Theorem of Calculus: know the statement (both parts) and how to use it.
- Substitution: how to use it, for both definite and indefinite integrals

