Things You Should Know For Final

Exam covers 1.4-1.6, 1.8, 2.1-2.8, 3.1-3.5, 3.7-3.9, 4.1-4.5, 5.1, 5.2

1) Limits

- The idea of a limit, limit from the left, and limit from the right; how to tell if any of these exist by looking at a graph. You do NOT need to know the precise definitions involving epsilons.
- The limit laws: know them! In particular, be able to tell when something is NOT a limit law!
- How to algebraically manipulate expressions of the form $0 / 0$ in order to find a limit (using factorization, common denominators, etc.) OR
- l'Hopitals's rule: only for $0 / 0$ or $\pm \infty / \pm \infty$ quotients; in that case and provided the necessary hypotheses are met,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

it will also work for $0 \times \pm \infty$ provided you rewrite the product as a quotient.

- The identity $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ and how to use it.
- Vertical and Horizontal Asymptotes: how to find them and what they mean for a graph. For vertical, know that these exist whenever you see a limit of the form $x / 0$ where $x \neq 0$.
- Limits to Infinity: be aware of the conjugation trick when you have $\infty-\infty$. You may freely use the result that $\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0$. You do NOT need to know the precise definitions involving epsilons.
- Infinite Limits: be able to distinguish whether a limit (from the right, from the left, or in general) is infinity, negative infinity, or does not exist. You do NOT need to know the precise definitions involving epsilons.
- The Squeeze Theorem: know how to state it and in what situations it applies (usually sines and cosines are involved)

2) Continuity

- Know the definition.
- Determine where an (algebraically given) function is continuous- especially a piecewise-defined one!
- Be able to check continuity from a graph.
- You may use the fact that a polynomial is continuous on all real numbers and a rational function is continuous wherever it is defined.

3) The Intermediate Value Theorem: the statement and how to use the theorem to show a function has a zero.

4) Differentiation

- The definition of the derivative, in both its forms.
- The geometric interpretation of the derivative as the slope of the tangent line
- The equation of the tangent line: $f^{\prime}(a)(x-a)=y-f(a)$
- The interpretation of the derivative as velocity, the second derivative as acceleration, and the third derivative as "jerk."
- The product rule $(f(x) g(x))^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$ and how to use it
- The chain rule $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$ and how to use it
- The quotient rule $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$ and how to use it (if you want to)
- The trig derivatives

$$
\begin{aligned}
& \frac{d}{d x}(\sin (x))=\cos (x) \quad \frac{d}{d x}(\tan (x))=\sec ^{2}(x) \quad \frac{d}{d x}(\sec (x))=\sec (x) \tan (x) \\
& \frac{d}{d x}(\cos (x))=-\sin (x) \quad \frac{d}{d x}(\cot (x))=-\csc ^{2}(x) \quad \frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)
\end{aligned}
$$

In particular, remember that there is a negative sign accompanying the "co" derivatives.

- Implicit differentiation
- how to do it
- how to find the tangent line to an equation
- related rates: every one is implicit differentiation, usually with respect to time!
* draw a picture;
* label the variables and identify what you're looking for and what you're given;
* find an equation that relates all the quantities, implicitly differentiate it, THEN plug in the numbers;
* solve!
* some things to keep in mind: the pythagorean theorem, similar triangles, the definitions of trigonometric functions, the volumes of a cone and sphere.
- Maximum/minimum values of a function.
- the difference between an absolute maximum (or absolute minimum) and a local maximum (or local minimum) for a function
- a continuous function on a closed interval $[a, b]$ attains its absolute maximum and minimum values
* to find the maximum and minimum, calculate all points in $[a, b]$ where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist (i.e. the critical numbers);
* plug all these points and the endpoints $x=a$ and $x=b$ back into the ORIGINAL FUNCTION $f(x)$; the biggest value of f is the maximum and the smallest is the minimum,
- Fermat's theorem: if f has a local maximum or minimum at $x=a$, then either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
- Intervals of increase/decrease for a function f
- find all points where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist;
- plot these points on a number line- this determines a collection of open intervals;
- take points in the open intervals and plug the into the DERIVATIVE $f^{\prime}(x)$. A positive value for $f^{\prime}(x)$ means f is increasing on that interval, a negative value means f is decreasing;
- use the intervals of increase/decrease to determine whether a function has a local maximum, minimum, or neither (the first derivative test)
- The second derivative test: if $f^{\prime}(c)=0$, then
- $f^{\prime \prime}(c)>0$ means f has a local minimum at $x=c$;
- $f^{\prime \prime}(c)<0$ means f has a local maximum at $x=c$;
$-f^{\prime \prime}(c)=0$ means the test fails and you know nothing.
- Intervals of concavity for a function f
- find all points where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist;
- plot these points on a number line- this determines a collection of open intervals;
- take points in the open intervals and plug the into the SECOND DERIVATIVE $f^{\prime \prime}(x)$. A positive value for $f^{\prime \prime}(x)$ means f is concave up on that interval, a negative value means f is concave down;
- use the intervals of concavity to determine whether a function has an inflection point

5) The Mean Value Theorem: the statement and how to use the theorem to show a function has exactly one zero.
6) Antiderivatives (same as indefinite integrals)

- How to compute them.
- Any two antiderivatives differ by a constant.

7) Newton's Method: how to use it, when it fails.
8) Optimization problems

- Draw a picture and label it
- Determine an equation in one variable for the quantity you want to optimize
- Take the derivative of the equation, set it equal to zero
- If necessary, use either the first or second derivative tests to check that your answer actually satisfies the required properties

9) Integration

- The definition of a definite integral

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{b-a}{n} f\left(a+\frac{i(b-a)}{n}\right)
$$

provided the limit exists!

- How to use an integral to find the area between two curves, especially if one of those curves is the x-axis
- find all points where the curves intersect by setting them equal to eachother
- determine which function is bigger between two consecutive points where they are equal and integrate the bigger one minus the smaller one over those points
- add all the answers to get the area
- Properties of integrals. The first two hold for indefinite integrals as well.

1. $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
2. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ if "c" is a constant
3. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ if $a \leq c \leq b$
4. $\int_{a}^{a} f(x) d x=0$
5. if $f \leq g$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

- The Fundamental Theorem of Calculus: know the statement (both parts) and how to use it.
- Substitution: how to use it, for both definite and indefinite integrals
- Volume problems:
- (Disk method) The formula for the volume obtained by revolving the region between two curves $f(x)$ and $g(x)$ from $x=a$ to $x=b$ about the x-axis when $f \geq g$ is

$$
V=\int_{a}^{b} \pi(f(x))^{2} d x-\int_{a}^{b} \pi(g(x))^{2} d x
$$

Know this formula and know how to use it, ESPECIALLY if g is the x-axis.

- (Shell method) The formula for the volume obtained by revolving the region between two curves $f(x)$ and $g(x)$ from $x=a$ to $x=b$ about the y-axis when $f \geq g$ is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x-\int_{a}^{b} 2 \pi x(g(x))^{2} d x
$$

Know this formula and know how to use it, ESPECIALLY if g is the x-axis.
10) Any and all algebra and trigonometry that you have ever learned (minus some of the weirder trig identities).

