Math 116 Homework 1- Due Tuesday 9/22

Directions: Except where indicated, merely finding the answer to a problem is not enough to receive credit. You must show how you arrived at that answer. DO NOT convert roots or transcendentals like e into a decimal approximation; just leave them as they are.

1) Verify that f has an inverse function through differentiation, then find $(f^{-1})'(c)$ for the given value of c.

a)
$$f(x) = x + 2\sqrt{x}, x > 0, c = 8$$

b) $f(x) = \int_{1}^{\frac{x}{3}} \sqrt{10 + t^2} dt, c = 0$

2) Find the derivatives of the functions.

a)
$$\ln(xe^x)$$
 b) $f(x) = e^{4\ln x}$ c) $f(x) = 11^{-4x}$

3) Compute the value of the integrals.

a)
$$\int \frac{5^{2\sqrt{x}}}{\sqrt{x}} dx$$

b) $\int_{0}^{1} \frac{e^{x}}{6 - e^{x}} dx$
c) $\int_{-1}^{2} 6x^{2}7^{x^{3}} dx$
d) $\int \frac{-\ln(x^{2})}{x^{3}} dx$
e) $\int_{\pi/6}^{\pi/4} \frac{\cos(x)}{1 + \sin(x)} dx$

4) Let R be the region bounded by the graph of $y = e^{-x^2}$, the x-axis, and the lines x = 0 and x = 1.

a) Find the volume of the solid generated by revolving R about the y-axis.

b) Set up an integral for the volume of the solid obtained by revolving R about the x-axis; do not attempt to compute the volume!

5) Use logarithmic differentiation to find the derivatives of the given functions.

a)
$$y = \frac{(x^3 + 1)^4}{\cos^2(x)\sin(3x)}$$

b) $y = x^{2x^2}$