Math 116 Homework 1- Due Tuesday 9/22

Directions: Except where indicated, merely finding the answer to a problem is not enough to receive credit. You must show how you arrived at that answer. DO NOT convert roots or transcendentals like e into a decimal approximation; just leave them as they are.

1) Verify that f has an inverse function through differentiation, then find $\left(f^{-1}\right)^{\prime}(c)$ for the given value of c.
a) $f(x)=x+2 \sqrt{x}, x>0, c=8$
b) $f(x)=\int_{1}^{\frac{x}{3}} \sqrt{10+t^{2}} d t, c=0$
2) Find the derivatives of the functions.
a) $\ln \left(x e^{x}\right)$
b) $f(x)=e^{4 \ln x}$
c) $f(x)=11^{-4 x}$
3) Compute the value of the integrals.
a) $\int \frac{5^{2 \sqrt{x}}}{\sqrt{x}} d x$
b) $\int_{0}^{1} \frac{e^{x}}{6-e^{x}} d x$
c) $\int_{-1}^{2} 6 x^{2} 7^{x^{3}} d x$
d) $\int \frac{-\ln \left(x^{2}\right)}{x^{3}} d x$
e) $\int_{\pi / 6}^{\pi / 4} \frac{\cos (x)}{1+\sin (x)} d x$
4) Let R be the region bounded by the graph of $y=e^{-x^{2}}$, the x-axis, and the lines $x=0$ and $x=1$.
a) Find the volume of the solid generated by revolving R about the y-axis.
b) Set up an integral for the volume of the solid obtained by revolving R about the x-axis; do not attempt to compute the volume!
5) Use logarithmic differentiation to find the derivatives of the given functions.
a) $y=\frac{\left(x^{3}+1\right)^{4}}{\cos ^{2}(x) \sin (3 x)}$
b) $y=x^{2 x^{2}}$
