Math 116 Homework 3

Directions: Except where indicated, merely finding the answer to a problem is not enough to receive credit. You must show how you arrived at that answer. DO NOT convert roots or transcendentals like e into a decimal approximation; just leave them as they are.

1) Find an equation in x and y that describes the parametric curve, then graph it and indicate the direction of increasing t.
a) $f(t)=\left\langle\ln \left(e^{2} t\right), \sqrt{t}\right\rangle, t \geq 1$
b) $f(t)=\langle 7 \sin (t), 9 \cos (t)\rangle, 0 \leq t \leq \pi$
2) Find the equation of the tangent line to $f(t)=\langle\cot (t), \csc (t)\rangle$ at the point $(1 / \sqrt{3}, 2 / \sqrt{3})$.
3) Calculate the arclength of $f(t)=\left\langle 4 t-17, e^{2 t}+e^{-2 t}\right\rangle$ from $t=0$ to $t=\ln (13)$.
4) Establish an equation in polar coordinates for the curve $x^{2}+y^{2}=4 y-2 x$.
5) Find all points (x, y) in rectangular (Cartesian) coordinates where the tangent line to $r=1+\sin (\theta)$ is vertical or horizontal.
6) Calculate the indicated area.
a) from $\theta=-\pi / 4$ to $\theta=\pi / 3$ inside $r=\cos (\theta)$
b) inside both $r=11+6 \sin (\theta)$ and $r=11+6 \cos (\theta)$.
c) inside one loop of $r=\sqrt{\sin (4 \theta)}$.
7) Find the length of the polar curve $r=2 \theta^{2}$ from $\theta=0$ to $\theta=\pi$.
