Name:

Math 116 Exam 1

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.

1) A mixture of water and sugar flows into a tank containing 800 L of pure Michigan water. Let $x(t)$ denote the amount of sugar in the tank at time t. Suppose the mixture flows into the tank at $6 \mathrm{~L} / \mathrm{min}$ and flows out at the same rate.
a) (2 points) Determine the initial condition on x.
b) (10 points) Find an equation for $\frac{d x}{d t}$ in terms of $x(t)$ if the mixture flowing in contains $.5 \mathrm{~kg} / \mathrm{L}$ of sugar.
c) (6 points) How does the equation in part b) change if, after one hour, the concentration of the mixture changes to $1.5 \mathrm{~kg} / \mathrm{L}$ of sugar?
2) Your can of Mountain Dew Code Red ${ }^{\circledR}$ is a lovely $80^{\circ} \mathrm{F}$, but you would like to drink it at a less tepid temperature, so you put it in the freezer. The temperature inside your freezer is $0^{\circ} \mathrm{F}$. You take the can out after 8 minutes and the temperature registers $60^{\circ} \mathrm{F}$, which is still too warm, so you immediately put it back in the freezer.
a) (15 points) Find an explicit formula for the temperature $f(t)$ of the can of The Dew.
b) (5 points) At what time will you need to pull the can of The Dew out if you want it to be $38^{\circ} \mathrm{F}$ when you begin drinking it?
3) a) (3 points) If f is continuous on $[0, \infty)$, define $\int_{0}^{\infty} f(t) d t$.
b) (7 points) State L'Hôpital's Rule.
c) (20 points) Compute the Laplace Transform of $f(t)=2 t-3$. Recall that the Laplace Transform of a function f is defined as

$$
\mathcal{L}\{f\}(w)=\int_{0}^{\infty} f(t) e^{-w t} d t
$$

4) a) (11 points) Find the partial fraction decomposition of $\frac{2 x+1}{x^{3}+x}$.
b) (10 points) Compute $\lim _{x \rightarrow \infty}\left(1+\frac{\ln (2)}{x}\right)^{x}$
c) (11 points) Determine the value of $\int_{\pi / 6}^{\pi / 4} \frac{\sec (t)}{\cot (t)+\sec (t) \csc (t)} d t$
