Name:

# Math 116 Exam 1 

February 7, 2018

## Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) A tank contains 750 L of water with 5 kg of dissolved fructose initially present. A mixture containing water with $.02 \mathrm{~kg} / \mathrm{L}$ of fructose flows into the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$ and flows out at the same rate. If you are pedantic, the mixture is kept uniform by stirring. Let $x(t)$ denote the amount of sugar in the tank at time $t$, in kilograms.
a) (6 points) Suppose someone tells you that $x(15)=4 \mathrm{~kg}$. Is this possible? Why or why not?
b) (4 points) Without solving for $x(t)$, what is the value of $\lim _{t \rightarrow \infty} x(t)$ ? Justify your answer with some reasoning.
2) A tank contains 750 L of water with 5 kg of dissolved fructose initially present. A mixture containing water with $.02 \mathrm{~kg} / \mathrm{L}$ of fructose flows into the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$ and flows out at the same rate. If you are pedantic, the mixture is kept uniform by stirring. Let $x(t)$ denote the amount of sugar in the tank at time $t$, in kilograms.
a) (10 points) Find an equation for $\frac{d x}{d t}$ in terms of $x(t)$, plugging in all relevant numbers.
b) (12 points) Solve the equation you found in part a) for $x(t)$.
c) (4 points) Find the amount of fructose in the tank after 15 minutes.
3) Your Ford Flex has spent the night in your attached garage and registers an exterior temperature of $24^{\circ} \mathrm{F}$ when you turn the ignition in the morning. As you drive, you note the exterior temperature dropping, and after one minute, it registers $13^{\circ} \mathrm{F}$. After 3 minutes, it registers $9^{\circ} \mathrm{F}$. Let $f(t)$ denote the temperature of the car's exterior at time $t$.
a) (6 points) State Newton's Law of Cooling.
b) (4 points) Do you have enough information to find a formula for the exterior temperature? Why or why not?
c) (2 points) Suppose you also know the exterior temperature of the car stabilizes after 3 minutes. Now do you have enough information? DO NOT ACTUALLY SOLVE!
4) Compute the answers for the following problems:
a) (8 points) $\lim _{x \rightarrow \infty} \frac{e^{2 / x}-1}{1 / x}$
b) (12 points) $f^{\prime}(\pi / 4)$ if $f(x)=\cos (x)^{\sin (x)}$
c) (12 points) $\int x^{3} \cos (2 x) d x$.
5) a) (3 points) If $f$ is continuous on $[0, \infty)$, define $\int_{0}^{\infty} f(t) d t$.
b) (12 points) Compute the Laplace Transform of $f(t)=3^{t}$. Recall that the Laplace Transform of a function $f$ is defined as

$$
\mathcal{L}\{f\}(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

c) (5 points) For which values of $s$ does the Laplace Transform of $3^{t}$ exist? Why?

