Exam 1 Winter 18
a) No. The amount per liter coming in is $.024 g=\frac{1}{50}$ which is greater than ${ }^{2}$ $\frac{5}{750}=\frac{1}{150} 1^{\text {so }}$ He amount of fructose will only increase
b) It is .02.750

$$
=15 \mathrm{~kg}
$$

since the concentrator n per liver will approach the concentration of the liquid flowing in.
2) $a)$

$$
\begin{aligned}
\frac{d x}{d t} & =(\text { rate in })-(\text { rate out }) \\
& =.02 \frac{\mathrm{~kg}}{\mathrm{~L}} \cdot 10 \frac{\mathrm{~L}}{\mathrm{~min}}-10 \frac{\mathrm{~L}}{\min \frac{x(t)}{75^{\circ}} \mathrm{ug}} \mathrm{~L} \\
& =\left(.2-\frac{x(t)}{75}\right)^{\mathrm{kgy}_{y} / \mathrm{min}} \\
& =\frac{15-x(t)}{75}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{1}{15-x(t)} \frac{d x}{d t} & =\frac{1}{75} \\
\int \frac{1}{15-x(t)} \frac{d x}{d t} d t & =\int \frac{1}{75} d t \\
& =\frac{t}{75}+c
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{15-x(t)} \frac{d x}{d t} d t \\
& u=15-x(t) \\
& d u=-\frac{d x}{d t} d t
\end{aligned}
$$

$$
\begin{aligned}
\text { We get } & -\int \frac{1}{v} d v \\
= & -\ln (v) \\
= & -\ln (15-x(t)) \\
= & \frac{t}{15}+C
\end{aligned}
$$

since $x(0)=5$,

$$
\begin{aligned}
-\ln (15-5) & =c \\
c & =-\ln (10)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
-\ln (15-x(t)) & =\frac{t}{75}-\ln (10) \\
\ln (15-x(t)) & =\frac{-t}{75}+\ln (10) \\
e^{\ln (15-x(t))} & =e^{-\frac{t}{75}}+\ln (10) \\
& =15-x(t)
\end{array}\right)=e^{-\frac{t}{75}} e^{\ln (10)} .
$$

3)

$$
\text { a) } \begin{aligned}
\frac{d f}{d t} & =k(f(t)-T) \\
u & =\text { constant of proportionality } \\
T & =\text { ambient temp }
\end{aligned}
$$

b) Yes. We don't have He external temperature, bot 3 temperature values at 3 different times will solve for k, T, and the constant of integration C.
C) Yes. Now you can take

$$
T=9^{0} F
$$

a) a)

$$
\text { a) } \begin{aligned}
& \lim _{x \rightarrow \infty} e^{\frac{2}{x}}-1=1-1=0 \\
& \lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
& \lim _{x \rightarrow \infty} \frac{e^{2 / x}-1}{\frac{1}{x}} \\
1+ & \lim _{x \rightarrow \infty} \frac{-\frac{2}{x^{2}} e^{2 / x}}{-\frac{1}{x^{2}}} \\
= & \lim _{x \rightarrow \infty} 2 e^{2 / x}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \begin{aligned}
& f(x)=e^{\ln \left((\cos (x))^{\sin (x))}\right.} \\
&= e^{\sin (x) \ln (\cos (x))} \\
& f^{\prime}(x)=e^{\sin (x) \ln (\cos (x))} \cdot \frac{d}{d x}(\sin (x) \ln (\cos (x))) \\
&=\left.e^{\sin (x) \ln (\cos (x))}(\cos (x) \ln (\cos (x))+\sin (x) \cdot 1 \cdot \sin x)\right) \\
& \cos (x)
\end{aligned} \\
&=\cos (x)^{\sin (x)}\left(\cos (x) \ln (\cos (x))-\frac{\sin ^{2}(x)}{\cos (x)}\right) \\
& f^{\prime}(\pi / 4)=\left(\frac{\sqrt{2}}{2}\right)^{\sqrt{2} / 2}\left(\frac{\sqrt{2}}{2} \ln \left(\frac{\sqrt{2}}{2}\right)-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

4) c) $\int x^{3} \cos (2 x) d x$
integrate by parts, tabular

$$
\begin{aligned}
= & \frac{x^{3} \sin (2 x)}{2}+\frac{3 x^{2} \cos (2 x)}{4}-\frac{6 x \sin (2 x)}{8} \\
& -\frac{6 \cos (2 x)}{16}+C
\end{aligned}
$$

5) a) $\lim _{x \rightarrow \infty} \int_{0}^{x} f(t) d t$

$$
\text { b) } \begin{aligned}
& \mathcal{L}\left(3^{t}\right)(s) \\
= & \int_{0}^{\infty} 3^{t} e^{-s t} d t \\
= & \lim _{x \rightarrow \infty} \int_{0}^{x} 3^{t} e^{-s t} d t \\
= & \lim _{x \rightarrow \infty} \int_{0} e^{\ln \left(3^{t}\right)} e^{-s t} d t \\
= & \lim _{x \rightarrow \infty} \int_{0}^{x} e^{t \ln (3)} e^{-s t} d t \\
= & \lim _{x \rightarrow \infty} \int_{0} e^{t(\ln (3)-s)} d t
\end{aligned}
$$

$$
\begin{aligned}
= & \lim _{x \rightarrow \infty}\left(\left.\frac{e^{t(\ln (3)-s))}}{\ln (3)-s}\right|_{0} ^{x}\right) \\
& (s \neq \ln (3)) \\
= & \frac{1}{\ln (3)-s} \lim _{x \rightarrow \infty}\left(e^{x(\ln (3)-s)}-1\right) \\
= & \frac{1}{s-\ln (3)} \quad \text { if } s>\ln (3)
\end{aligned}
$$

C) $\delta \geq \ln (3)$ you need $S>\ln (3)$ for the limit of $e^{x(\ln (3)-s)}$ to equal zero, and $s \neq \ln (3)$ to aroid division by zero.

