Name:

Math 116 Exam 1

February 8, 2022

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.
4. If you have a question, raise your hand or come up and ask me.
1) Starting with the initial condition $y(0)=-1$ (i.e. start at $(0,-1)$), use three iterations of Euler's Method with $\Delta x=1$ to sketch a solution to

$$
\frac{d y}{d x}=\sin (\pi x)-y
$$

There is some graph paper on the next page if you need it.

Calendar By: WaterproofPaper.com More Free Printables: Calendars Maps Graph Paper Targets
2) Find the area enclosed by the curves $y=x^{2}$ and $y=2 x+3$.
3) Sasquatch wants to eat a Hot Pocket ${ }^{\circledR}$ he got from his friend Bigfoot. Since he acquired a microwave, he follows the directions and cooks it on high for 2 minutes. When he takes it out, his discerning senses register a blistering temperature of $200^{\circ} \mathrm{F}$ around the edges (we all know it is cold in the middle) and his kitchen is a pleasant $72^{\circ} \mathrm{F}$. Let $x(t)$ denote the temperature of the Hot Pocket ${ }^{\circledR}$, where t is measured in minutes.
a) Suppose someone tells you that $x(5)=68^{\circ} \mathrm{F}$. Without solving for $x(t)$, explain whether or not this is possible.
b) Find an equation for $\frac{d x}{d t}$ in terms of $x(t)$, plugging in all relevant numbers.
c) If the Hot Pocket ${ }^{\circledR}$'s edge is 150° after 1 minute, how long will Sasquatch have to wait until it has cooled to 120°, when he will begin eating it? There had better be some calculus on this part!
4) A sphere of radius 5 cm has a hole bored through its center of radius 3 cm.
a) Determine a formula, using calculus, for the volume remaining after the hole has been bored out.
b) Find the volume remaining after the hole has been bored out.

