$$
E_{x a n} 1 \backsim 23^{\prime} \quad 12: 33
$$

() a) No, become that is colder then the ambient temperature
b)

$$
\begin{aligned}
& \frac{d f}{d t}=k(f(t)-70) \\
& \frac{1}{f(t)-70} \frac{d f}{d t}=k \\
& \int \frac{1}{f(t)-70} \frac{d f}{d t} d t=\int k d t \\
& v=f(t)-70=k t+c \\
& d v=\frac{d f}{d t} \\
& S \frac{1}{v} d v=k t+c \\
& \ln |v|=h t+C
\end{aligned}
$$

$$
\begin{aligned}
& \ln |f(t)-70|=k t+c \\
& f(t)-70=e^{k t+c} \\
& t=0, \quad f(0)=212 \\
& 2(2-70=e^{c} \\
& c=\ln (142)
\end{aligned}
$$

Not enough information to find k, so yous caner solve
2) a) $50 / 750=1 / 5 C .1=1 / 0$
so the amount of sugar Should be increasing over time, not decreasing, so this is not possible
b) $s(0)=50$
() over tine, the concentration will get closer to the concentration of the mixture flowing in, so the limit is $.1 \times 750=75$
3) a) $\frac{d s}{d t}=($ rate in) -(rate out)

$$
\begin{aligned}
& d t \\
& \frac{d s}{d t}=.2 \mathrm{ug} / \mathrm{L} \cdot 12 \mathrm{~L} / \mathrm{min}-12 L / \mathrm{min} \frac{s(t)}{750} \\
& \frac{d s}{d t}=24 \mathrm{us} / \mathrm{min}-\frac{2 s(t)}{125} \mathrm{us} / \mathrm{min}
\end{aligned}
$$

b) $\frac{d s}{d t}=\frac{-2}{125}(s(t)-150)$

$$
\begin{aligned}
& \frac{1}{s(t)-150} \frac{d s}{d t}=\frac{-2}{125} \\
& \int \frac{1}{s(t)-150} \frac{d s}{d t} d t=\int-\frac{2}{125} d t \\
& v=s(t)-150=-\frac{2 t}{125}+C \\
& d u=\frac{d s}{2 t}
\end{aligned}
$$

$$
\begin{aligned}
S \frac{1}{0} d u & =\frac{-2 t}{125}+C \\
\ln |u| & =\frac{-2 t}{125}+C \\
\ln |s(t)-150| & =\frac{-2 t}{125}+C \\
(50-s(t) & =e^{-\frac{2 t}{125}+C} \\
s(0) & =50,50 \\
C & =\ln (100) \\
s(t) & =e^{\frac{-2 t}{125}+\ln 100} \\
s(t) & =150-e^{-\frac{2 t}{125}+\ln (100)} \\
s(t) & =150-100 e^{\frac{2 t}{12}}
\end{aligned}
$$

$$
\text { c) } s c(0)=150-100 e^{-\frac{20}{125}} \approx 64.79
$$

4) $\quad \frac{\ln \left(x^{4}\right)}{x}=\frac{\ln \left(x^{3}\right)}{x}$

$$
\begin{gathered}
\frac{\ln \left(x^{4}\right)}{x}-\frac{\ln \left(x^{3}\right)}{x}=0 \\
\frac{1}{x}\left(\ln \left(x^{4}\right)-\ln \left(x^{3}\right)\right)=0
\end{gathered}
$$

either $\frac{1}{x}=0$ (never happens)
or $\quad \ln \left(x^{4}\right)-\ln \left(x^{3}\right)=0$

$$
\begin{aligned}
\ln \left(x^{4}\right)-\ln \left(x^{3}\right) & =4 \ln (x)-3 \ln (x) \\
& =\ln (x)
\end{aligned}
$$

$$
\begin{gathered}
\ln (x)=0 \\
x=1
\end{gathered}
$$

$$
\begin{aligned}
&\left.\int_{1}^{e^{3}} \left\lvert\, \frac{\ln \left(x^{4}\right)}{x}-\frac{\ln \left(x^{3}\right)}{x}\right.\right) d x \\
&= \int_{1}^{e^{3}}\left|\frac{4 \ln (x)}{x}-\frac{3 \ln (x)}{x}\right| d x \\
&= \int_{1}^{e^{3}} \frac{\ln (x)}{x} d x \\
& v=\ln (x) \quad u(1)=0 \\
&= \int_{0}^{3} u d u=\frac{1}{x} d x \quad u\left(e^{3}\right)=3 \\
&=v^{2}\left.\right|_{0} ^{3}=\frac{9}{2}
\end{aligned}
$$

