Math 116 Exam 2

November 11, 2010

Directions: WRITE YOUR NAME ON THIS Exam! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) Find the sum of the series or show that it diverges.
a) (10 points) $\sum_{n=2}^{\infty} \frac{11^{n+1}}{5^{2 n}}$
b) (10 points) $\sum_{n=1}^{\infty} \ln \left(\frac{n+3}{n+4}\right)$ (Hint: partial sums.)
2) Consider the power series $\sum_{n=3}^{\infty} \frac{(5 x-15)^{n}}{\sqrt{n-2}}$.
a) (3 points) What is the center of the series?
b) (12 points) Find the radius of convergence of the series.
3) The following series converge. Find a number of terms needed to estimate the value of the sum to within .0001 .
a) $\sum_{n=2}^{\infty} \frac{7}{n^{3}}$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{4}}{e^{n}}$
4) Determine whether the following series converge or diverge. CLEARLY STATE WHICH TEST YOU ARE USING!
a) $(6$ points $) \sum_{n=0}^{\infty} \frac{7 n+1}{n+1}$
b) (10 points) $\sum_{n=6}^{\infty} \frac{(-32)^{n}}{n!}$
c) $(12$ points $) \sum_{n=2}^{\infty} \frac{\arctan (\sqrt{n})}{\sqrt{n}}$
