Math 116 Exam 2

November 17, 2016

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.

1) Consider the power series $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{5^{n}\left(n^{3}+n+1\right)}$.
a) (3 points) What is the center of the series?
b) (14 points) Find the radius of convergence of the series.
c) (2 points) Given that the radius of convergence is 5 , list two numbers other than the center for which the series converges.
2) (17 points) Let $f(x)=\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n+1}}{n!}$. Show that f satisfies the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

3) a) (6 points) Define what it means for $\sum_{n=1}^{\infty} a_{n}$ to converge to a real number.
b) (13 points) Using the definition of convergence for a series, find the sum of $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})$ or show the series diverges.
4) Find the sum of the series or show the series diverges.
a) $(9$ points $) \sum_{n=1}^{\infty} \frac{(-1)^{n} 8^{n}}{3^{2 n}}$.
b) (11 points) $\sum_{n=0}^{\infty} \frac{(-16)^{n+3}}{(2 n+1)!}$
5) (13 points) Determine the limit of the sequence

$$
\left(\left(1+\frac{8}{n}\right)^{n}\right)_{n=1}^{\infty}
$$

6) (12 points) Let $f(x)=\frac{3 x+6}{x^{2}+4 x+2}$. Find a power series representation for f.
